-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathVeST.cpp
1361 lines (1223 loc) · 41.4 KB
/
VeST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* @file VEST.cpp
*
* VEST: Very Sparse Factorization of Large-Scale Tensors
*
* This software is free of charge under research purposes.
* For commercial purposes, please contact the author.
*
* Recent Updates:
- None
* Usage:
* - make demo
*/
#include "VeST.h"
// [Output] abs value of Gaussing random number
// [Function] Gaussing number generator centered a 0 with 1 std using Marsaglia's polar method
double Gaussian() {
static bool hasSpare = false;
static double spare;
if(hasSpare) {
hasSpare = false;
return 0.0 + 1.0 * spare;
}
hasSpare = true;
static double u, v, s;
do {
u = (rand() / ((double) RAND_MAX)) * 2.0 - 1.0;
v = (rand() / ((double) RAND_MAX)) * 2.0 - 1.0;
s = u * u + v * v;
}
while( (s >= 1.0) || (s == 0.0) );
s = sqrt(-2.0 * log(s) / s);
spare = v * s;
return abss(0.0 + 1.0 * u * s);
}
//[Input] Given tensor X
//[Output] Updated WhereX and CountX
//[Function] Assign all non-zeros to the corresponding rows, represented as WhereX and CountX
void assign_index() {
int *tempX = (int *)malloc(sizeof(int)*max_dim*order);
int pos = 0, i, j, k, l;
for (int i = 0; i < order; i++) {
for (int j = 0; j < dimensionality[i]; j++) {
CountX[i*max_dim + j] = tempX[i*max_dim + j] = 0;
}
}
for (int i = 0; i < Entries_N; i++) {
for (int j = 0; j < order; j++) {
k = Index[pos++];
CountX[j*max_dim + k]++;
tempX[j*max_dim + k]++;
}
}
pos = 0;
int now = 0;
for (int i = 0; i < order; i++) {
pos = i*max_dim;
for (int j = 0; j < dimensionality[i]; j++) {
k = CountX[pos];
CountX[pos] = now;
tempX[pos++] = now;
now += k;
}
CountX[pos] = now;
tempX[pos] = now;
}
pos = 0;
for (int i = 0; i < Entries_N; i++) {
for (int j = 0; j < order; j++) {
k = Index[pos++];
int now = tempX[j*max_dim + k];
WhereX[now] = i;
tempX[j*max_dim + k]++;
}
}
free(tempX);
}
//[Input] Metadata + input tensor as a sparse tensor format
//[Output] Initialized core tensor G and factor matrices A^{(n)} (n=1...N)
//[Function] Getting all information about an input tensor X / Initialize all factor matrices and core tensor.
int Read_Input(){
double start_time = clock();
if(VERBOSE) printf("Reading Input and Initializing ...\n");
int rt = Read_Training();
if(rt == -1) return -1;
if(TESTING){ Read_Testing(); }
if(FIXEDINIT) // ONLY FOR TESTING WITH FIXED INITIALIZATION
Initialize_read_init();
else
Initialize();
if(VERBOSE) printf("Elapsed Time for I/O and Initializations:\t%lf\n\n", (clock() - start_time) / CLOCKS_PER_SEC);
}
int Read_Training(){
// input files for training tensor and testing tensor
FILE *ftrain=NULL;
char tmp[1005]; // tmp array for reading file
// initialize dimension and set core sizes
dimensionality = (int *)malloc(sizeof(int)*order);
for (int i = 0; i < order; i++) {
dimensionality[i] = 0;
Core_N *= Core_size[i];
}
// count Entries number of train set tensor
// NOTE: need a better way to do this
Entries_N=0;
ftrain = fopen(InputPath, "r");
while (fgets(tmp, 1005, ftrain)) {
Entries_N++;
}
fclose(ftrain);
Index = (int *)malloc(sizeof(int)*Entries_N*order);
Entries = (double *)malloc(sizeof(double)*Entries_N);
//assign value of train & test set
ftrain = fopen(InputPath,"r");
if(ftrain == NULL){ perror("cannot open input file"); return -1; }
int pos = 0;
for (int i = 0; i < Entries_N; i++) {
fgets(tmp, 1005, ftrain);
int len = strlen(tmp);
int k = 0, idx = 0, flag = 0;
double mul = 0.1, val = 0;
for (int j = 0; j < len; j++) {
if (tmp[j] == ' ' || tmp[j] == '\t') {
Index[pos++] = idx - 1;
if (dimensionality[k] < idx) dimensionality[k] = idx;
idx = 0;
k++;
}
else if (tmp[j] >= '0' && tmp[j] <= '9') {
if (flag == 1) {
val += mul*(tmp[j] - '0');
mul /= 10;
}
else idx = idx * 10 + tmp[j] - '0';
}
else if (tmp[j] == '.') {
val += idx;
flag = 1;
}
}
if(flag==0) val = idx;
Entries[i] = val;
NormX += Entries[i] * Entries[i];
}
fclose(ftrain);
// Setting input training tensor parameters
t_FM_N=0;
FM_N = (int*)malloc(sizeof(int)*order);
for (int i = 0; i < order; i++) {
max_dim = MAX(max_dim, dimensionality[i]);
FM_N[i] = dimensionality[i]*Core_size[i];
t_FM_N += dimensionality[i]*Core_size[i];
}
max_dim++; // just give margin (don't care)
WhereX = (int *)malloc(sizeof(int)*order*Entries_N);
CountX = (int *)malloc(sizeof(int)*max_dim*order);
NormX = sqrt(NormX);
if(VERBOSE) {
printf("Reading Training Tensor Done.\n\n[METADATA]\nTensor Order: %d\tSize: ", order);
for (int i = 0; i < order; i++) {
if (i != order - 1) printf("%dx", dimensionality[i]);
else printf("%d\t", dimensionality[i]);
}
printf("Rank: ");
for (int i = 0; i < order; i++) {
if (i != order - 1) printf("%dx", Core_size[i]);
else printf("%d\t", Core_size[i]);
}
printf("NNZ : %d\tThreads : %d\tNorm : %lf\n", Entries_N, threadsN, NormX);
} // end VERBOSE
return 1;
}
void Read_Testing(){
// input files for training tensor and testing tensor
FILE *ftest=NULL;
char tmp[1005]; // tmp array for reading file
test_N = 0;
// count Entries number of train & test set tensor
// NOTE: need a better way to do this
ftest = fopen(testInputPath, "r");
if(ftest == NULL){ TESTING = false; return; }
while (fgets(tmp, 1005, ftest)) {
test_N++;
}
fclose(ftest);
I2 = (int *)malloc(sizeof(int)*test_N*order);
E2 = (double *)malloc(sizeof(double)*test_N);
//assign value of test set
ftest = fopen(testInputPath,"r");
int pos = 0;
for (int i = 0; i < test_N; i++) {
fgets(tmp, 1005, ftest);
int len = strlen(tmp);
int k = 0, idx = 0, flag = 0;
double mul = 0.1, val = 0;
for (int j = 0; j < len; j++) {
if (tmp[j] == ' ' || tmp[j] == '\t') {
I2[pos++] = idx - 1;
if (dimensionality[k] < idx) dimensionality[k] = idx;
idx = 0;
k++;
}
else if (tmp[j] >= '0' && tmp[j] <= '9') {
if (flag == 1) {
val += mul*(tmp[j] - '0');
mul /= 10;
}
else idx = idx * 10 + tmp[j] - '0';
}
else if (tmp[j] == '.') {
val += idx;
flag = 1;
}
}
if(flag==0) val = idx;
E2[i] = val;
}
fclose(ftest);
return;
}
void Initialize(){
if(VERBOSE) printf("Initialize...\n");
// Initialize output factor matrix intermediate data structures
assign_index();
FactorM = (double *)malloc(sizeof(double)*order*max_dim*Core_max);
f_Num = (int *)malloc(sizeof(int)*order*max_dim*Core_max);
if(!AUTO) target_FM_N = (int *)malloc(sizeof(int)*order);
Pruned_FM_N = (int *)malloc(sizeof(int)*order);
markFM = (bool *)malloc(sizeof(int)*order*max_dim*Core_max);
f_Resp = (double *)malloc(sizeof(double)*order*max_dim*Core_max);
// initilize factor matrix and indexings
// something more efficient will be better
for (int i = 0; i < order; i++) {
int row = dimensionality[i], col = Core_size[i];
if(!AUTO) target_FM_N[i] = pratio*row*col+1;
Pruned_FM_N[i] = 0;
int s_index = 0;
for (int j = 0; j < row; j++) {
for (int k = 0; k < col; k++) {
FactorM[i*max_dim*Core_max + j*Core_max + k] = frand(0, 1);
//FactorM[i*max_dim*Core_max + j*Core_max + k] = Gaussian();
markFM[i*max_dim*Core_max + j*Core_max + k] = 0;
f_Num[i*max_dim*Core_max + s_index] = i*max_dim*Core_max + j*Core_max + k;
s_index++;
}
}
}
// Initialize output core tensor parameters and data structures
CoreTensor = (double *)malloc(sizeof(double)*Core_N);
CorePermu = (int *)malloc(sizeof(int)*Core_N*order);
markCore = (bool*)malloc(sizeof(int)*Core_N);
c_Resp = (double*)malloc(sizeof(double)*Core_N);
c_Num = (int*)malloc(sizeof(int)*Core_N);
if(!AUTO) target_Core_N = Core_N*pratio + 1;
int pos = 0;
for (int i = 0; i < Core_N; i++) {
CoreTensor[i] = frand(0, 1);
//CoreTensor[i] = Gaussian();
markCore[i] = 0;
c_Num[i] = i;
if (i == 0) {
for (int j = 0; j < order; j++) CorePermu[j] = 0;
}
else {
for (int j = 0; j < order; j++) {
CorePermu[i*order + j] = CorePermu[(i - 1)*order + j];
}
CorePermu[i*order + order - 1]++;
int k = order - 1;
while (CorePermu[i*order + k] >= Core_size[k]) {
CorePermu[i*order + k] -= Core_size[k];
CorePermu[i*order + k - 1]++; k--;
}
}
}
// size adjusted LAMBDA value
if(!FIXED_LAMBDA)
LAMBDA *= ((double)Entries_N)/((double)Core_N+(double)t_FM_N);
}
// FOR TEST ONLY - read in fixed initial FMs and Core
void Initialize_read_init(){
if(VERBOSE) printf("Initialize...\n");
// Initialize output factor matrix intermediate data structures
assign_index();
FactorM = (double *)malloc(sizeof(double)*order*max_dim*Core_max);
f_Num = (int *)malloc(sizeof(int)*order*max_dim*Core_max);
if(!AUTO) target_FM_N = (int *)malloc(sizeof(int)*order);
Pruned_FM_N = (int *)malloc(sizeof(int)*order);
markFM = (bool *)malloc(sizeof(int)*order*max_dim*Core_max);
f_Resp = (double *)malloc(sizeof(double)*order*max_dim*Core_max);
// initilize factor matrix and indexings
// something more sfficient will be better
char fmFN[1024];
strcpy(fmFN,InputPath); strcat(fmFN, "_FM");
FILE *FM = fopen(fmFN, "r");
bool is_there = true;
if(FM == NULL){
is_there = false;
FM = fopen(fmFN, "w");
if(VERBOSE) printf("INIT FM new\n");
}else{
if(VERBOSE) printf("INIT FM old\n");
}
for (int i = 0; i < order; i++) {
int row = dimensionality[i], col = Core_size[i];
if(!AUTO) target_FM_N[i] = pratio*row*col+1;
Pruned_FM_N[i] = 0;
int s_index = 0;
for (int j = 0; j < row; j++) {
for (int k = 0; k < col; k++) {
if(is_there){ // read in
char x[100];
if(fscanf(FM, "%100s", x) == 1)
FactorM[i*max_dim*Core_max + j*Core_max + k] = atof(x);
else
FactorM[i*max_dim*Core_max + j*Core_max + k] = 0.0;
}else{ // write and store
double randNum = frand(0,1); // Gaussina();
FactorM[i*max_dim*Core_max + j*Core_max + k] = randNum;
fprintf(FM, "%f\t", randNum);
}
markFM[i*max_dim*Core_max + j*Core_max + k] = 0;
f_Num[i*max_dim*Core_max + s_index] = i*max_dim*Core_max + j*Core_max + k;
s_index++;
}
fprintf(FM, "\n");
}
}
fclose(FM);
// Initialize output core tensor parameters and data structures
CoreTensor = (double *)malloc(sizeof(double)*Core_N);
CorePermu = (int *)malloc(sizeof(int)*Core_N*order);
markCore = (bool*)malloc(sizeof(int)*Core_N);
c_Resp = (double*)malloc(sizeof(double)*Core_N);
c_Num = (int*)malloc(sizeof(int)*Core_N);
if(!AUTO) target_Core_N = Core_N*pratio + 1;
int pos = 0;
char cfFN[1024];
strcpy(cfFN,InputPath); strcat(cfFN, "_Core");
FILE *CF = fopen(cfFN, "r");
is_there = true;
if(CF == NULL){
is_there = false;
CF = fopen(cfFN, "w");
if(VERBOSE) printf("INIT CORE new\n");
}else{
if(VERBOSE) printf("INIT CORE old\n");
}
for (int i = 0; i < Core_N; i++) {
if(is_there){ // read in
char x[100];
if(fscanf(CF, "%100s", x) == 1)
CoreTensor[i] = atof(x);
else
CoreTensor[i] = 0;
}else{
double randNum= frand(0, 1);
CoreTensor[i] = randNum;
fprintf(CF, "%f\t", randNum);
}
markCore[i] = 0;
c_Num[i] = i;
if (i == 0) {
for (int j = 0; j < order; j++) CorePermu[j] = 0;
}
else {
for (int j = 0; j < order; j++) {
CorePermu[i*order + j] = CorePermu[(i - 1)*order + j];
}
CorePermu[i*order + order - 1]++;
int k = order - 1;
while (CorePermu[i*order + k] >= Core_size[k]) {
CorePermu[i*order + k] -= Core_size[k];
CorePermu[i*order + k - 1]++; k--;
}
}
}
fclose(CF);
// normalized LAMBDA value
LAMBDA *= ((double)Entries_N)/((double)Core_N+(double)t_FM_N);
}
//[Input] Input tensor X, initialized or updated factor matrices A^{(n)} (n=1,...,N) and core tensor G
//[Output] Updated core tensor G
//[Function] Update all core tensor entries by a entry-wise update rule derived from L_1 regularized loss function
void Update_Core_Tensor() {
double* Save_1 = (double *)malloc(sizeof(double)*Entries_N);
int mull = max_dim*Core_max;
#pragma omp parallel for schedule(static)
for (int i = 0; i < Entries_N; i++){
double *cach = (double *) malloc(sizeof(double)*order);
//double *cach = new double[order];
for (int j = 0; j < order; j++) cach[j] = Index[i*order + j];
double ans=0;
for (int j = 0; j < Core_N; j++){
double temp = CoreTensor[j];
for (int k = 0; k < order; k++){
int mulrow = cach[k];
int mulcol = CorePermu[j*order + k];
temp *= FactorM[k*mull+mulrow*Core_max+mulcol];
}
ans+=temp;
}
Save_1[i] = ans;
free(cach);
}
//Cannot be parallelized
for (int i = 0; i < Core_N; i++) {
if(markCore[i] != 0) continue;
double *cach = (double *) malloc(sizeof(double)*order);
double g = 0;
double d = 0;
for (int j = 0; j < order; j++) cach[j] = CorePermu[i*order + j];
for (int j = 0; j < Entries_N; j++) {
double temp = 1;
for (int k = 0; k < order; k++) {
int mulrow = Index[j*order + k];
int mulcol = cach[k];
temp *= FactorM[k*mull + mulrow*Core_max + mulcol];
}
if(loss_type=='1'){ // L1 loss
g += (-2)*(Entries[j]-Save_1[j]+(temp*CoreTensor[i]))*temp;
d += 2*temp * temp;
}else{ // LF loss
g += (Entries[j]-Save_1[j]+(temp*CoreTensor[i]))*temp;
d += temp * temp;
}
Save_1[j] -= CoreTensor[i]*temp;
}
if(loss_type == '1'){ // L1 loss
if(g > LAMBDA) CoreTensor[i] = (LAMBDA - g)/d;
else if (g < -LAMBDA) CoreTensor[i] = -(LAMBDA+g)/d;
else CoreTensor[i] = 0;
}else{
CoreTensor[i] = g/(d + LAMBDA);
}
for (int j = 0; j < Entries_N; j++) {
double temp=1;
for (int k = 0; k < order; k++) {
int mulrow = Index[j*order + k], mulcol = cach[k];
temp *= FactorM[k*mull + mulrow*Core_max + mulcol];
}
Save_1[j] += CoreTensor[i]*temp;
}
free(cach);
}
free(Save_1);
}
//[Input] Input tensor X, initialized core tensor G, and factor matrices A^{(n)} (n=1...N)
//[Output] Updated factor matrices A^{(n)} (n=1...N)
//[Function] Update all factor matrice entries by a entry-wise update rule derived from L_1 regularized loss function
void Update_Factor_Matrices() {
int mult = max_dim*Core_max;
for (int i = 0; i < order; i++) { //Updating the ith Factor Matrix
int row_N = dimensionality[i];
int column_N = Core_size[i];
// store index of all nonzero elements of core-tensor
int fmsize = Core_N;
if(MARK) fmsize -= Pruned_Core_N;
int *nz_core_ind = (int*)malloc(sizeof(int)*(fmsize));
int nnzc = 0; //number of nonzero entries of core tensor
for (int l = 0; l < Core_N; l++){
if(MARK) if(CoreTensor[l] == 0) continue;
nz_core_ind[nnzc] = l;
nnzc++;
}
#pragma omp parallel for schedule(static) //in parallel
for (int j = 0; j < row_N; j++) {
for(int k = 0; k < column_N; k++){
if(markFM[i*mult + j*Core_max + k] != 0) continue;
double *Delta = (double *)malloc(sizeof(double)*column_N);
double *V = (double *)malloc(sizeof(double)*column_N);
double e = 0;
//Initialize V
for (int l = 0; l < column_N; l++) {
V[l] = 0;
}
int pos = i*max_dim + j;
int nnz = CountX[pos + 1] - CountX[pos];
pos = CountX[pos];
for (int l = 0; l < nnz; l++) { //Updating Delta and V
int current_input_entry = WhereX[pos + l];
int pre_val = current_input_entry*order;
int *cach1 = (int *)malloc(sizeof(int)*order);
for (int ll = 0; ll < order; ll++) cach1[ll] = Index[pre_val++];
for (int ll = 0; ll < column_N; ll++) Delta[ll] = 0;
for (int ll = 0; ll < nnzc; ll++) {
int nzidx = nz_core_ind[ll];
int pre1 = nzidx*order, pre2 = 0;
int CorePos = CorePermu[pre1 + i];
double res = CoreTensor[nzidx];
for (int ii = 0; ii < order; ii++) {
if (ii != i) {
int mulrow = cach1[ii], mulcol = CorePermu[pre1];
res *= FactorM[pre2 + mulrow*Core_max + mulcol];
}
pre1++;
pre2 += mult;
}
Delta[CorePos] += res;
}
free(cach1);
int now = 0;
double Entry_val = Entries[current_input_entry];
double cach = Delta[k];
for (int ii = 0; ii < column_N; ii++) {
V[ii] += cach * Delta[ii];
}
e += cach * Entry_val;
}
free(Delta);
//Update the (j,k) entries of ith Factor Matrix
int cach = i*mult + j*Core_max;
double res = 0;
for (int l = 0; l < column_N; l++) {
if(l == k) continue;
res += V[l] * FactorM[cach+l];
}
if(loss_type == '1'){
double g = (-2)*(e-res);
double d = 2*V[k];
if(g > LAMBDA) {
FactorM[cach + k] = (LAMBDA - g)/d;
}
else if(g < LAMBDA*-1) {
FactorM[cach + k] = -(LAMBDA+g)/d;
}
else {
FactorM[cach + k] = 0;
}
}else{ // loss type LF
FactorM[cach + k] = (e-res)/(V[k] + LAMBDA);
}
free(V);
}
}
free(nz_core_ind);
}
}
//[Input] Input tensor X, core tensor G, and factor matrices A^{(n)} (n=1...N)
//[Output] Fit = 1-||X-X'||/||X|| (Reconstruction error = ||X-X'||)
//[Function] Calculating fit and reconstruction error in a parallel way.
void Reconstruction() {
RE = RMSE = Error = 0;
double* Error_T = (double *)malloc(sizeof(double)*Entries_N);
#pragma omp parallel for schedule(static)
for (int i = 0; i < Entries_N; i++) {
Error_T[i] = Entries[i];
}
int mult = max_dim*Core_max;
#pragma omp parallel for schedule(static)
for (int i = 0; i < Entries_N; i++) {
int j, pre_val = i*order;
double ans = 0;
int *cach1 = (int *)malloc(sizeof(int)*order);
//int *cach1 = new int[order];
for (int j = 0; j < order; j++) cach1[j] = Index[pre_val++];
for (int j = 0; j < Core_N; j++) {
double temp = CoreTensor[j];
int pos = j*order;
int val = 0;
for (int k = 0; k < order; k++) {
int mulrow = cach1[k], mulcol = CorePermu[pos++];
temp *= FactorM[val + mulrow*Core_max + mulcol];
val += mult;
}
ans += temp;
}
free(cach1);
Error_T[i] -= ans;
}
#pragma omp parallel for schedule(static) reduction(+:Error)
for (int i = 0; i < Entries_N; i++) {
Error += Error_T[i] * Error_T[i];
}
if(NormX != 0) RE = sqrt(Error)/NormX;
else printf("Problem Occured; check input tensor\n");
RMSE = sqrt((RE*RE)/Entries_N);
free(Error_T);
}
//[Input] Input tensor X, updated factor matrices A^{(n)} (n=1,...,N) and core tensor G, and marking table
//[Output] Pruned core tensor G, updated marking table
//[Function] Calculating Resp(G_gamma) for core tensor entry G_gamma and prune core tensor entries
void Calculate_Core_Resp() {
double* tc_Error_T = (double *) malloc(sizeof(double)*Entries_N);
int unmarked_Core_N = Core_N;
if(MARK) unmarked_Core_N -= Pruned_Core_N;
#pragma omp parallel for schedule(static)
for (int i=0; i<Core_N; i++) {
c_Resp[i] = 0;
}
#pragma omp parallel for schedule(static)
for (int i = 0; i < Entries_N; i++){
tc_Error_T[i] = Entries[i];
}
int mull = max_dim*Core_max;
#pragma omp parallel for schedule(static)
for (int i = 0; i < Entries_N; i++){
double *cach = (double *) malloc(sizeof(double)*order);
for (int j = 0; j < order; j++) cach[j] = Index[i*order + j];
double ans=0;
for (int j = 0; j < Core_N; j++){
double temp = CoreTensor[j];
for (int k = 0; k < order; k++){
int mulrow = cach[k], mulcol = CorePermu[j*order + k];
temp *= FactorM[k*mull+mulrow*Core_max+mulcol];
}
ans+=temp;
}
free(cach);
tc_Error_T[i] -= ans;
}
#pragma omp parallel for schedule(static)
for (int i = 0; i < unmarked_Core_N; i++) {
int idx = c_Num[i];
double *cach = (double *) malloc(sizeof(double)*order);
double ans = 0;
for (int j = 0; j < order; j++) cach[j] = CorePermu[idx*order + j];
for (int j = 0; j < Entries_N; j++) {
double temp = CoreTensor[idx];
for (int k = 0; k < order; k++) {
int mulrow = Index[j*order + k], mulcol = cach[k];
temp *= FactorM[k*mull + mulrow*Core_max + mulcol];
}
ans += (tc_Error_T[j]+temp)*(tc_Error_T[j]+temp);
}
free(cach);
c_Resp[idx] = ans;
}
std::sort(c_Num, c_Num + unmarked_Core_N, comp_c);
free(tc_Error_T);
}
//[Input] Input tensor X, updated factor matrices A^{(n)} (n=1,...,N) and core tensor G, and marking table
//[Output] Pruned factor matrix A^{(i)} and updated marking table
//[Function] Calculating Resp(a^{i}_{jk}) for factor matrix entry a^{i}_{jk} and prune factor matrix entries
void Calculate_FM_Resp() {
for(int i=0; i<order; i++){
int row = dimensionality[i], col = Core_size[i];
int mull = max_dim*Core_max;
int unmarked_FM_N = row*col;
if(MARK) unmarked_FM_N -= Pruned_FM_N[i];
//printf("check\n");
for (int j = 0; j < row; j++) {
for (int k = 0; k < col; k++) {
int temp = i*Core_max*max_dim + j*Core_max + k;
f_Resp[temp] = 0;
}
}
//#pragma omp parallel for schedule(dynamic)
#pragma omp parallel for schedule(static)
for(int s_index = 0; s_index < unmarked_FM_N; s_index++){
int idx = f_Num[i*Core_max*max_dim + s_index];
int j_index = (idx-i*Core_max*max_dim)/Core_max;
int k_index = (idx-i*Core_max*max_dim)%Core_max;
int pos = i*max_dim + j_index;
int e_Entries_N = CountX[pos+1] - CountX[pos];
double* n_Error_T;
n_Error_T = (double *)malloc(sizeof(double)*e_Entries_N);
int e_Core_N = 1;
int* tempcoreidx;
for (int q = 0; q < order; q++){
if(q==i) continue;
e_Core_N *= Core_size[q];
}
tempcoreidx = (int*)malloc(sizeof(int)*e_Core_N);
int n_i = 0;
for (int q = 0; q < Core_N; q++){
if(CorePermu[order*q+i] == k_index){
tempcoreidx[n_i] = q;
n_i++;
}
if(n_i == e_Core_N) break;
}
pos = CountX[pos];
for (int n_i = 0; n_i < e_Entries_N; n_i++){
int current_input_entry = WhereX[pos+n_i];
int pre_val = current_input_entry*order;
//int n_j;
double *cach = (double *) malloc(sizeof(double)*order);
for (int n_j = 0; n_j < order; n_j++) {
cach[n_j] = Index[pre_val++];
}
double ans1=0;
double ans2=0;
int tmp_idx=0;
for (int n_j = 0; n_j < Core_N; n_j++){
double n_temp = CoreTensor[n_j];
for (int n_k = 0; n_k < order; n_k++){
int mulrow = cach[n_k];
int mulcol = CorePermu[n_j*order + n_k];
n_temp *= FactorM[n_k*mull + mulrow*Core_max + mulcol];
}
ans1+=n_temp;
if(n_j == tempcoreidx[tmp_idx]){
ans2 += n_temp;
if(tmp_idx < e_Core_N) tmp_idx++;
}
}
free(cach);
if(tmp_idx != e_Core_N) {
cout << "problem happens" << endl;
cout << "(i, j, k) = (" << i << ", " << j_index << ", " << k_index << "): ";
cout << tmp_idx << "(e_Core_N = " << e_Core_N << ")" << endl;
}
n_Error_T[n_i] = (2*Entries[current_input_entry] - 2*ans1 + ans2)*ans2;
}
double f_Error = 0;
for(int n_i = 0; n_i<e_Entries_N; n_i++){
f_Error += n_Error_T[n_i];
}
f_Resp[idx] = f_Error;
free(n_Error_T);
free(tempcoreidx);
}
int start = i*Core_max*max_dim;
sort(f_Num + start, f_Num + start + unmarked_FM_N, comp_f);
}
}
//[Input] Input tensor X, updated factor matrices A^{(n)} (n=1,...,N) and core tensor G, and marking table
//[Output] Pruned factor matrix A^{(i)} and core tensor G, and updated marking table
//[Function] Calculating Resp value and prune elements
double Pruning(int g_iter){
int Remove;
double pR = MIN(INIT_PR*g_iter, MAX_PR);
int countPR = 0;
//double pR = 0.1;
Calculate_Core_Resp();
// Prune Core Tensor
int unmarked_Core_N = Core_N - Pruned_Core_N;
if(AUTO){
Remove = pR*Core_N;
if(unmarked_Core_N - Remove < Core_max) {
Remove = MAX(unmarked_Core_N - Core_max,0);
countPR++;
}
}else{
if(target_Core_N - Pruned_Core_N > pR*Core_N)
Remove = pR*Core_N;
else{
Remove = target_Core_N - Pruned_Core_N;
countPR++;
}
}
if(MARK){
for(int i=0; i < Remove; i++){
int now = c_Num[unmarked_Core_N - 1 - i];
CoreTensor[now] = 0;
markCore[now] = 1;
}
}else{
for(int i=0; i < Remove + Pruned_Core_N; i++){
int now = c_Num[Core_N - 1 - i];
CoreTensor[now] = 0;
}
}
Pruned_Core_N += Remove;
// calculate FM responsibility
Calculate_FM_Resp();
// Prune Factor Matrices
for(int i=0; i<order; i++){
int unmarked_FM_N = FM_N[i] - Pruned_FM_N[i];
if(AUTO){
Remove = pR*FM_N[i];
if(unmarked_FM_N - Remove < dimensionality[i]){
Remove = MAX(unmarked_FM_N - dimensionality[i],0);
countPR++;
}
}else{
if(target_FM_N[i] - Pruned_FM_N[i] > pR*FM_N[i]) Remove = pR*FM_N[i];
else{
Remove = target_FM_N[i] - Pruned_FM_N[i];
countPR++;
}
}
if(MARK){
for(int j=0; j < Remove; j++){
int now = f_Num[i*Core_max*max_dim + unmarked_FM_N - 1 -j];
int row_idx = (now-i*Core_max*max_dim)/Core_max;
int col_idx = (now-i*Core_max*max_dim)%Core_max;
if(row_idx > dimensionality[i]) cout << "Problem occured, rowidx:" << row_idx << " > row:" << dimensionality[i] << endl;
if(col_idx > Core_size[i]) cout << "Problem occured, colidx:" << col_idx << " > col:" << Core_size[i] << endl;
FactorM[now] = 0;
if(MARK) markFM[now] = 1;
}
}else{
for(int j=0; j < Remove+Pruned_FM_N[i]; j++){
int now = f_Num[i*Core_max*max_dim + FM_N[i] - 1 -j];
int row_idx = (now-i*Core_max*max_dim)/Core_max;
int col_idx = (now-i*Core_max*max_dim)%Core_max;
if(row_idx > dimensionality[i]) cout << "Problem occured, rowidx:" << row_idx << " > row:" << dimensionality[i] << endl;
if(col_idx > Core_size[i]) cout << "Problem occured, colidx:" << col_idx << " > col:" << Core_size[i] << endl;
FactorM[now] = 0;
}
}
Pruned_FM_N[i] += Remove;
}
if(countPR == order+1) keepPruning = false;
int t_pruned = Pruned_Core_N;
int t_N = Core_N;
for(int i = 0; i < order; i++){
t_pruned += Pruned_FM_N[i];
t_N += FM_N[i];
}
totalsparsity = (double)t_pruned/(double)t_N;
// return;
return pR;
}
// Purning stopping criterion
void CheckOP(int g_iter, double pR){
double avgd;
if(keepPruning == false) return;
if(g_iter==1)
RE_max = RE_min = RE;
if(pR < 0.09){
double dd = RE + preREs[0] -2.0*preREs[1];
if(VERBOSE){ printf("2nd derivative calculated:%.3f + %.3f -2.0*%.3f = %.3f\n", RE, preREs[0], preREs[1], dd); }
if(RE > RE_max) RE_max = RE;
if(RE < RE_min) RE_min = RE;
// update previous REs
preREs[0] = preREs[1];
preREs[1] = RE;
} else {
// estimate the 2nd derivative dd to determin the elbow point
double dd = RE + preREs[0] - 2.0*preREs[1];
if(VERBOSE){ printf("2nd derivative calculated:%.3f + %.3f -2.0*%.3f = %.3f\n", RE, preREs[0], preREs[1], dd); }
if( dd > DELTA && RE-preREs[2] > STOP_RE_DIFF*20.0){
keepPruning = false;
return;
}
// for cases without a elbow point (linely increasing REs)
if( RE>=RE_min*(1.0 + STOP_RE_P) ){
keepPruning = false;
return;
}
// Update
if(RE > RE_max) RE_max = RE;
if(RE < RE_min) RE_min = RE;
preREs[0] = preREs[1];
preREs[1] = RE;
}
return;
}
void RevivePE(double pR){
int Revive;
// Revive Core Tensor
Revive = pR*Core_N;
int unmarked_Core_N = Core_N - Pruned_Core_N;
for(int i=0; i < Revive; i++){
int now = c_Num[unmarked_Core_N + i];
markCore[now] = 0;
}
Pruned_Core_N -= Revive;
// Prune Factor Matrices
for(int i=0; i<order; i++){
Revive = pR*FM_N[i];
int unmarked_FM_N = FM_N[i] - Pruned_FM_N[i];
for(int j=0; j < Revive; j++){
int now = f_Num[i*Core_max*max_dim + unmarked_FM_N + j];
int row_idx = (now-i*Core_max*max_dim)/Core_max;
int col_idx = (now-i*Core_max*max_dim)%Core_max;
if(row_idx > dimensionality[i]) cout << "Problem occured, rowidx:" << row_idx << " > row:" << dimensionality[i] << endl;
if(col_idx > Core_size[i]) cout << "Problem occured, colidx:" << col_idx << " > col:" << Core_size[i] << endl;
markFM[now] = 0;
}
Pruned_FM_N[i] -= Revive;
}
int t_pruned = Pruned_Core_N;
int t_N = Core_N;
for(int i = 0; i < order; i++){
t_pruned += Pruned_FM_N[i];
t_N += FM_N[i];
}
totalsparsity = (double)t_pruned/(double)t_N;
alreadyRevived = true;
}
//[Input] Updated factor matrices A^{(n)} (n=1...N)
//[Output] Standardized factor matrices A^{(n)} (n=1...N) and tuned core tensor G
//[Function] Standardize all column of factor matrices and update core tensor simultaneously.
void Standardize() {
Mul = (int*)malloc(sizeof(int)*order);
Mul[order - 1] = 1;
for (int i = order - 2; i >= 0; i--) {
Mul[i] = Mul[i + 1] * Core_size[i + 1];
}
int pos = 0;
for (int i = 0; i < order; i++) {
mat X = mat(dimensionality[i], Core_size[i]);
mat N = mat(Core_size[i], Core_size[i]);
double* normval = (double*)malloc(sizeof(double)*Core_size[i]);
N.zeros();
for(int j = 0; j < Core_size[i]; j++){
normval[j] = 0;
}
for (int j = 0; j < dimensionality[i]; j++) {
for (int k = 0; k < Core_size[i]; k++) {
X(j, k) = FactorM[i*max_dim*Core_max + j*Core_max + k];
normval[k] += FactorM[i*max_dim*Core_max + j*Core_max + k]*FactorM[i*max_dim*Core_max + j*Core_max + k];
}
}
for(int j = 0; j < Core_size[i]; j++){
N(j,j) = sqrt(normval[j]);
}