Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

5 implement continual learning benchmark evaluation #9

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 31 additions & 7 deletions dev_notebook.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@
"import torch\n",
"from train import *\n",
"from data.utils import *\n",
"from continuum import ClassIncremental\n",
"from continuum.tasks import split_train_val\n",
"DEVICE = torch.device(\"cpu\")"
]
},
Expand All @@ -31,16 +33,38 @@
" 'dp': True,\n",
" 'C': .02,\n",
" 'sigma': .1\n",
" 'increment': 5\n",
"}\n",
"\n",
"model = load_model(dataset='mnist')\n",
"train_results = train(\n",
" model, trainloader_mnist, device=DEVICE, n_epochs=10, opt_params=params\n",
")\n",
"\n",
"test_results = test(\n",
" model, testloader_mnist, device=DEVICE\n",
")"
"for learning in ['central', 'single', 'multi']:\n",
" if learning == 'central':\n",
" trainloader = torch.utils.data.DataLoader(\n",
" dataset=trainset_mnist, batch_size=params['batch_size'], shuffle=True, drop_last=True)\n",
"\n",
" testloader = torch.utils.data.DataLoader(\n",
" dataset=testset_mnist, batch_size=params['batch_size'], shuffle=False, drop_last=True)\n",
" model = load_model(dataset='mnist')\n",
" train_results = train( model=model, trainloader=trainloader,\n",
" device=DEVICE, opt_params=params)\n",
" test_results = test(model, testloader_mnist, device=DEVICE)\n",
"\n",
" else:\n",
" # Incremental Learning(Changing params will change how many classes at a time to learn\n",
" scenario = ClassIncremental(trainset_mnist, increment=(1 if learning == 'single' else params['increment']))\n",
" print(f\"Number of classes: {scenario.nb_classes}.\")\n",
" print(f\"Number of tasks: {scenario.nb_tasks}.\")\n",
" for task_id, train_taskset in enumerate(scenario):\n",
" train_taskset, val_taskset = split_train_val(train_taskset, val_split=0)\n",
" trainloader = torch.utils.data.DataLoader(dataset=train_taskset, batch_size=params['batch_size'],\n",
" shuffle=True, drop_last=True)\n",
" model = load_model(dataset='mnist')\n",
" train_results = train( model=model, trainloader=trainloader,\n",
" device=DEVICE, opt_params=params)\n",
" test_results = test(model, testloader_mnist, device=DEVICE)\n",
"\n",
"\n",
"\n"
],
"metadata": {
"collapsed": false,
Expand Down
42 changes: 21 additions & 21 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,27 +52,27 @@ def train(
for b_ix, sample in enumerate(pbar):
pbar.set_description(f'Epoch {epoch}: Training...')

image, label = sample[0].to(device), sample[1].to(device)

# forward + backward + optimize
optimizer.zero_grad()
y_hat = model(image)
loss = criterion(y_hat, label)
loss.backward()

if use_dp:
for param in model.parameters():
clip_grad_norm_(param.grad, max_norm=C)
param = param - lr * param.grad
param += torch.normal(mean=torch.zeros(param.shape), std=sigma * C)
else:
optimizer.step()

# Collect statistics
running_loss += loss.item()
_, predicted = torch.max(y_hat.data, 1)
total += label.size(0)
running_acc += (predicted == label).sum().item()
images, label = sample[0].to(device), sample[1].to(device)
for image in images:
# forward + backward + optimize
optimizer.zero_grad()
y_hat = model(image)
loss = criterion(y_hat, label)
loss.backward()

if use_dp:
for param in model.parameters():
clip_grad_norm_(param.grad, max_norm=C)
param = param - lr * param.grad
param += torch.normal(mean=torch.zeros(param.shape), std=sigma * C)
else:
optimizer.step()

# Collect statistics
running_loss += loss.item()
_, predicted = torch.max(y_hat.data, 1)
total += label.size(0)
running_acc += (predicted == label).sum().item()

results.append((running_loss/total, running_acc/total))

Expand Down