Skip to content

local-ai-zone/local-ai-zone.github.io

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

GGUF Model Discovery

A professional, premium web application for discovering and browsing GGUF (GPT-Generated Unified Format) machine learning models. This platform provides an elegant interface to explore thousands of quantized AI models with detailed information, engagement metrics, and direct download links.

πŸš€ Features

Core Functionality

  • Model Discovery: Browse 5,000+ GGUF format AI models
  • Advanced Search: Real-time search with fuzzy matching
  • Smart Filtering: Filter by quantization type, model type, and license
  • Engagement Metrics: Like counts, download statistics, and popularity indicators
  • Responsive Design: Premium mobile-first responsive interface
  • Performance Optimized: Fast loading with efficient data handling

Premium UI/UX

  • Professional Design: Business-class styling with premium aesthetics
  • Interactive Elements: Smooth animations and hover effects
  • Accessibility: WCAG compliant with keyboard navigation support
  • Dark Mode: Automatic dark mode support based on user preferences
  • Mobile Optimized: Collapsible header and mobile-friendly interactions

Technical Features

  • SEO Optimized: Structured data, meta tags, and prerendering support
  • GitHub Integration: Automated workflows for data updates
  • Modular Architecture: Component-based JavaScript architecture
  • Performance Monitoring: Built-in analytics and performance tracking

πŸ—οΈ Architecture

Frontend Structure

β”œβ”€β”€ index.html              # Main application entry point
β”œβ”€β”€ css/
β”‚   β”œβ”€β”€ premium-styles.css  # Main premium styling
β”‚   └── *.css              # Component-specific styles
β”œβ”€β”€ js/
β”‚   β”œβ”€β”€ premium-app.js     # Main application controller
β”‚   β”œβ”€β”€ components/        # Reusable UI components
β”‚   β”œβ”€β”€ services/          # Data and business logic services
β”‚   β”œβ”€β”€ state/            # Application state management
β”‚   └── utils/            # Utility functions and helpers
└── scripts/              # Build and automation scripts

Data Flow

  1. Data Fetching: Python scripts fetch model data from Hugging Face
  2. Processing: Data is processed and enriched with engagement metrics
  3. Storage: JSON files store processed model information
  4. Rendering: JavaScript dynamically renders the UI
  5. Interaction: User interactions update filters and views

πŸ› οΈ Installation & Setup

Prerequisites

  • Node.js (v16 or higher)
  • Python 3.8+
  • Git

Quick Start

# Clone the repository
git clone https://github.com/local-ai-zone/local-ai-zone.github.io.git
cd gguf-model-discovery

# Install Python dependencies
pip install -r scripts/requirements.txt

# Start local development server
python -m http.server 8000

# Open in browser
open http://localhost:8000

Development Setup

# Install development dependencies
npm install

# Run data fetching script
python scripts/simplified_gguf_fetcher.py

# Start development server with live reload
npm run dev

πŸ“Š Data Management

Model Data Structure

{
  "modelName": "string",
  "description": "string",
  "quantization": "string",
  "fileSize": "number",
  "downloadCount": "number",
  "likeCount": "number",
  "license": "string",
  "modelType": "string",
  "downloadUrl": "string"
}

Data Sources

  • Primary: Hugging Face Hub API
  • Enrichment: Community engagement metrics
  • Updates: Automated daily refresh via GitHub Actions

🎨 Styling & Theming

Design System

  • Color Palette: Professional blue and neutral tones
  • Typography: Inter font family for modern readability
  • Spacing: Consistent 8px grid system
  • Components: Reusable design tokens and components

CSS Architecture

  • CSS Variables: Centralized theming system
  • BEM Methodology: Block-Element-Modifier naming convention
  • Responsive Design: Mobile-first approach with breakpoints
  • Performance: Optimized CSS with minimal unused styles

πŸ”§ Configuration

Environment Variables

# Optional: API rate limiting
HUGGINGFACE_TOKEN=your_token_here

# Optional: Analytics
ANALYTICS_ID=your_analytics_id

Build Configuration

  • Prerendering: Static page generation for SEO
  • Minification: CSS and JS optimization
  • Compression: Gzip compression for assets

πŸš€ Deployment

GitHub Pages (Recommended)

# Build for production
npm run build

# Deploy to GitHub Pages
npm run deploy

Manual Deployment

  1. Build the project: npm run build
  2. Upload dist/ folder to your web server
  3. Configure server for SPA routing (if needed)

πŸ§ͺ Testing

Test Structure

test-*.html           # Integration tests
verify-*.js          # Unit tests
*-test.html          # Component tests

Running Tests

# Run all tests
npm test

# Run specific test suite
npm run test:engagement
npm run test:filters
npm run test:mobile

πŸ“ˆ Performance

Optimization Features

  • Lazy Loading: Images and components loaded on demand
  • Virtual Scrolling: Efficient rendering of large model lists
  • Caching: Intelligent caching of API responses
  • Compression: Optimized asset delivery

Performance Metrics

  • First Contentful Paint: < 1.5s
  • Largest Contentful Paint: < 2.5s
  • Cumulative Layout Shift: < 0.1
  • First Input Delay: < 100ms

πŸ”’ Security & Privacy

Security Measures

  • Content Security Policy: Strict CSP headers
  • HTTPS Only: Secure connections required
  • Input Sanitization: XSS prevention
  • Rate Limiting: API abuse prevention

Privacy

  • No Personal Data: No user data collection
  • External Links: Clear disclaimer about third-party content
  • Transparency: Open source and auditable code

🀝 Contributing

Development Workflow

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes and test thoroughly
  4. Commit with conventional commits: git commit -m "feat: add amazing feature"
  5. Push to your branch: git push origin feature/amazing-feature
  6. Open a Pull Request

Code Standards

  • JavaScript: ES6+ with modern syntax
  • CSS: BEM methodology with CSS variables
  • HTML: Semantic markup with accessibility
  • Testing: Comprehensive test coverage

πŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • Hugging Face: For providing the model data and API
  • GGUF Loader: For inspiration and branding partnership
  • Community: For feedback and contributions
  • Built with Kiro: This project leverages Kiro for AI-assisted development, including code generation and workflow automation.

πŸ“ž Support


Disclaimer: GGUF Loader is not affiliated with Hugging Face. All links point to publicly available models hosted by their respective creators. We do not store or redistribute any model files directly.