Skip to content

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

License

Notifications You must be signed in to change notification settings

lonePatient/BERT-NER-Pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

7c938a2 · Mar 11, 2023

History

27 Commits
May 29, 2021
May 29, 2021
Jan 10, 2020
May 29, 2021
Feb 26, 2020
May 29, 2021
Feb 26, 2020
May 29, 2021
May 29, 2021
May 29, 2021
Apr 25, 2020
Feb 12, 2019
Jul 18, 2020
Mar 11, 2023
Jan 4, 2020
May 29, 2021
May 29, 2021
May 29, 2021

Repository files navigation

Chinese NER using Bert

BERT for Chinese NER.

update:其他一些可以参考,包括Biaffine、GlobalPointer等:examples

dataset list

  1. cner: datasets/cner
  2. CLUENER: https://github.com/CLUEbenchmark/CLUENER

model list

  1. BERT+Softmax
  2. BERT+CRF
  3. BERT+Span

requirement

  1. 1.1.0 =< PyTorch < 1.5.0
  2. cuda=9.0
  3. python3.6+

input format

Input format (prefer BIOS tag scheme), with each character its label for one line. Sentences are splited with a null line.

美	B-LOC
国	I-LOC
的	O
华	B-PER
莱	I-PER
士	I-PER

我	O
跟	O
他	O

run the code

  1. Modify the configuration information in run_ner_xxx.py or run_ner_xxx.sh .
  2. sh scripts/run_ner_xxx.sh

note: file structure of the model

├── prev_trained_model
|  └── bert_base
|  |  └── pytorch_model.bin
|  |  └── config.json
|  |  └── vocab.txt
|  |  └── ......

CLUENER result

The overall performance of BERT on dev:

Accuracy (entity) Recall (entity) F1 score (entity)
BERT+Softmax 0.7897 0.8031 0.7963
BERT+CRF 0.7977 0.8177 0.8076
BERT+Span 0.8132 0.8092 0.8112
BERT+Span+adv 0.8267 0.8073 0.8169
BERT-small(6 layers)+Span+kd 0.8241 0.7839 0.8051
BERT+Span+focal_loss 0.8121 0.8008 0.8064
BERT+Span+label_smoothing 0.8235 0.7946 0.8088

ALBERT for CLUENER

The overall performance of ALBERT on dev:

model version Accuracy(entity) Recall(entity) F1(entity) Train time/epoch
albert base_google 0.8014 0.6908 0.7420 0.75x
albert large_google 0.8024 0.7520 0.7763 2.1x
albert xlarge_google 0.8286 0.7773 0.8021 6.7x
bert google 0.8118 0.8031 0.8074 -----
albert base_bright 0.8068 0.7529 0.7789 0.75x
albert large_bright 0.8152 0.7480 0.7802 2.2x
albert xlarge_bright 0.8222 0.7692 0.7948 7.3x

Cner result

The overall performance of BERT on dev(test):

Accuracy (entity) Recall (entity) F1 score (entity)
BERT+Softmax 0.9586(0.9566) 0.9644(0.9613) 0.9615(0.9590)
BERT+CRF 0.9562(0.9539) 0.9671(0.9644) 0.9616(0.9591)
BERT+Span 0.9604(0.9620) 0.9617(0.9632) 0.9611(0.9626)
BERT+Span+focal_loss 0.9516(0.9569) 0.9644(0.9681) 0.9580(0.9625)
BERT+Span+label_smoothing 0.9566(0.9568) 0.9624(0.9656) 0.9595(0.9612)

Releases

No releases published

Packages

No packages published