Skip to content

Fix overlapping crossbars #87

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 8 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 32 additions & 37 deletions scikit_posthocs/_plotting.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from copy import deepcopy
from typing import Dict, List, Optional, Set, Tuple, Union
from itertools import combinations

import numpy as np
from matplotlib import colors, pyplot
Expand Down Expand Up @@ -42,13 +42,12 @@ def sign_array(p_values: Union[List, np.ndarray, DataFrame], alpha: float = 0.05
[ 1, -1, 0],
[ 1, 0, -1]])
"""
sig_array = deepcopy(np.array(p_values))
sig_array[sig_array == 0] = 1e-10
sig_array[sig_array > alpha] = 0
sig_array[(sig_array < alpha) & (sig_array > 0)] = 1
np.fill_diagonal(sig_array, -1)

return sig_array
p_values = np.asarray(p_values)
if (p_values < 0).any():
raise ValueError("P values matrix must be non-negative")
result = (p_values <= alpha).astype(np.int8) # Returns a copy
np.fill_diagonal(result, -1)
return result


def sign_table(
Expand Down Expand Up @@ -500,7 +499,6 @@ def critical_difference_diagram(
markers = []
elbows = []
labels = []
crossbars = []

# True if pairwise comparison is NOT significant
adj_matrix = DataFrame(
Expand All @@ -518,45 +516,42 @@ def critical_difference_diagram(
ranks.iloc[: len(ranks) // 2],
ranks.iloc[len(ranks) // 2 :],
)
# points_left, points_right = np.array_split(ranks.sort_values(), 2)

# Sets of points under the same crossbar
crossbar_sets = _find_maximal_cliques(adj_matrix)

# Sort by lowest rank and filter single-valued sets
crossbar_sets = sorted(
(x for x in crossbar_sets if len(x) > 1), key=lambda x: ranks[list(x)].min()
# Arrays of ranks for each crossbar (each crossbar is a maximal clique)
crossbar_ranks = (
ranks.reindex(bar).sort_values().values
for bar in _find_maximal_cliques(adj_matrix)
if len(bar) > 1
)

# Create stacking of crossbars: for each level, try to fit the crossbar,
# Create stacking of crossbars: for each level, try to fit the widest crossbar,
# so that it does not intersect with any other in the level. If it does not
# fit in any level, create a new level for it.
crossbar_levels: list[list[set]] = []
for bar in crossbar_sets:
for level, bars_in_level in enumerate(crossbar_levels):
if not any(bool(bar & bar_in_lvl) for bar_in_lvl in bars_in_level):
ypos = -level - 1
bars_in_level.append(bar)
crossbar_levels: list[list[np.ndarray]] = []
for bar_i in sorted(crossbar_ranks, key=lambda x: x[0] - x[-1]):
for bars_in_level in crossbar_levels:
if all(
(bar_i[-1] < bar_j[0]) or (bar_i[0] > bar_j[-1]) # True if no intersection
for bar_j in bars_in_level
):
bars_in_level.append(bar_i)
break
else:
ypos = -len(crossbar_levels) - 1
crossbar_levels.append([bar])

crossbars.append(
ax.plot(
# Adding a separate line between each pair enables showing a
# marker over each elbow with crossbar_props={'marker': 'o'}.
[ranks[i] for i in bar],
[ypos] * len(bar),
**crossbar_props,
)
)
crossbar_levels.append([bar_i]) # Create a new level

# Plot crossbars.
# We add a separate segment between each elbow, enabling the display of a
# marker over each elbow, e.g. crossbar_props={'marker': 'o'}.
crossbars = [
[ax.plot(bar, [-i] * len(bar), **crossbar_props) for bar in level]
for i, level in enumerate(crossbar_levels)
]

lowest_crossbar_ypos = -len(crossbar_levels)
elbow_start_y = -len(crossbars)

def plot_items(points, xpos, label_fmt, color_palette, label_props):
"""Plot each marker + elbow + label."""
ypos = lowest_crossbar_ypos - 1
ypos = elbow_start_y
for idx, (label, rank) in enumerate(points.items()):
if not color_palette or len(color_palette) == 0:
elbow, *_ = ax.plot(
Expand Down
68 changes: 68 additions & 0 deletions tests/test_posthocs.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,6 +160,20 @@ def test_find_maximal_cliques_6x6(self):
set(map(frozenset, expected)),
)

def test_cd_diagram_single_bar(self):
index = list("abcdef")
ranks = Series([2.1, 1.2, 4.5, 3.2, 5.7, 6.5], index=index)
sig_matrix = DataFrame(
1, # No significant differences
index=index,
columns=index,
)
output = splt.critical_difference_diagram(ranks, sig_matrix)
self.assertEqual(len(output["markers"]), len(ranks))
self.assertEqual(len(output["elbows"]), len(ranks))
self.assertEqual(len(output["labels"]), len(ranks))
self.assertEqual(len(output["crossbars"]), 1)

def test_cd_diagram_number_of_artists(self):
index = list("abcdef")
ranks = Series([2.1, 1.2, 4.5, 3.2, 5.7, 6.5], index=index)
Expand All @@ -182,6 +196,60 @@ def test_cd_diagram_number_of_artists(self):
self.assertEqual(len(output["labels"]), len(ranks))
self.assertEqual(len(output["crossbars"]), 2)

def test_cd_diagram_all_significant(self):
index = list("abcdef")
ranks = Series(np.arange(len(index)), index=index)
sig_matrix = DataFrame(
np.eye(len(index)), # All significant
index=index,
columns=index,
)
output = splt.critical_difference_diagram(ranks, sig_matrix)
self.assertEqual(len(output["markers"]), len(ranks))
self.assertEqual(len(output["elbows"]), len(ranks))
self.assertEqual(len(output["labels"]), len(ranks))
self.assertEqual(len(output["crossbars"]), 0)

def test_cd_diagram_non_intersecting_crossbars(self):
index = list("abcdef")
# Swap the ranks of 'c' and 'd'
ranks = Series([0, 1, 3, 2, 4, 5], index=index)
sig_matrix = DataFrame(
[
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
],
index=index,
columns=index,
)
output = splt.critical_difference_diagram(ranks, sig_matrix)
crossbars = output["crossbars"]
y_positions = set(bar.get_ydata()[0] for level in crossbars for bar in level)
self.assertEqual(len(crossbars), len(y_positions))

def test_cd_diagram_normal_distributions(self):
rng = np.random.default_rng(0)
experiment_values = rng.normal(
loc=[-5.2, -6, -2.1, -1.7, -6.4],
scale=np.full(fill_value=.1, shape=(10, 1)),
)
df = DataFrame(experiment_values, columns=["A", "B", "C", "D", "E"])

test_result = sp.posthoc_conover_friedman(df.to_numpy())
average_ranks = df.rank(ascending=False, axis=1).mean(axis=0)

output = splt.critical_difference_diagram(
ranks=average_ranks, sig_matrix=test_result
)
self.assertEqual(len(output["markers"]), df.shape[1])
self.assertEqual(len(output["elbows"]), df.shape[1])
self.assertEqual(len(output["labels"]), df.shape[1])
self.assertEqual(len(output["crossbars"]), 0)

# Outliers tests
def test_outliers_iqr(self):
x = np.array([4, 5, 6, 10, 12, 4, 3, 1, 2, 3, 23, 5, 3])
Expand Down
Loading