Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[python-package] take shallow copy of dataframe in predict (fixes #6195) #6218

Merged
merged 5 commits into from
Dec 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion python-package/lightgbm/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -789,6 +789,10 @@ def _data_from_pandas(
if len(data.shape) != 2 or data.shape[0] < 1:
raise ValueError('Input data must be 2 dimensional and non empty.')

# take shallow copy in case we modify categorical columns
# whole column modifications don't change the original df
data = data.copy(deep=False)

# determine feature names
if feature_name == 'auto':
feature_name = [str(col) for col in data.columns]
Expand All @@ -805,7 +809,6 @@ def _data_from_pandas(
if list(data[col].cat.categories) != list(category):
data[col] = data[col].cat.set_categories(category)
if len(cat_cols): # cat_cols is list
data = data.copy(deep=False) # not alter origin DataFrame
data[cat_cols] = data[cat_cols].apply(lambda x: x.cat.codes).replace({-1: np.nan})
if categorical_feature == 'auto': # use cat cols from DataFrame
categorical_feature = cat_cols_not_ordered
Expand Down
19 changes: 16 additions & 3 deletions tests/python_package_test/test_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -822,21 +822,34 @@ def test_no_copy_when_single_float_dtype_dataframe(dtype, feature_name):


@pytest.mark.parametrize('feature_name', [['x1'], [42], 'auto'])
def test_categorical_code_conversion_doesnt_modify_original_data(feature_name):
@pytest.mark.parametrize('categories', ['seen', 'unseen'])
def test_categorical_code_conversion_doesnt_modify_original_data(feature_name, categories):
pd = pytest.importorskip('pandas')
X = np.random.choice(['a', 'b'], 100).reshape(-1, 1)
column_name = 'a' if feature_name == 'auto' else feature_name[0]
df = pd.DataFrame(X.copy(), columns=[column_name], dtype='category')
if categories == 'seen':
pandas_categorical = [['a', 'b']]
else:
pandas_categorical = [['a']]
data = lgb.basic._data_from_pandas(
data=df,
feature_name=feature_name,
categorical_feature="auto",
pandas_categorical=None
pandas_categorical=pandas_categorical,
)[0]
# check that the original data wasn't modified
np.testing.assert_equal(df[column_name], X[:, 0])
# check that the built data has the codes
np.testing.assert_equal(df[column_name].cat.codes, data[:, 0])
if categories == 'seen':
# if all categories were seen during training we just take the codes
codes = df[column_name].cat.codes
else:
# if we only saw 'a' during training we just replace its code
# and leave the rest as nan
a_code = df[column_name].cat.categories.get_loc('a')
codes = np.where(df[column_name] == 'a', a_code, np.nan)
np.testing.assert_equal(codes, data[:, 0])


@pytest.mark.parametrize('min_data_in_bin', [2, 10])
Expand Down