Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion onnxruntime/contrib_ops/webgpu/bert/attention.cc
Original file line number Diff line number Diff line change
Expand Up @@ -439,7 +439,7 @@ Status ApplyAttention(const Tensor* Q, const Tensor* K, const Tensor* V, const T
WebgpuAttentionParameters& parameters, onnxruntime::webgpu::ComputeContext& context, const Tensor* seqlen_k) {
const int output_count = std::min({context.OutputCount(), 1 + (past_key != nullptr ? 1 : 0) + (past_value != nullptr ? 1 : 0)});
const int past_sequence_length = output_count > 1 ? parameters.past_sequence_length_ : 0;
const int total_sequence_length = past_sequence_length + parameters.kv_sequence_length_;
const int total_sequence_length = parameters.total_sequence_length_;
Copy link
Contributor

@satyajandhyala satyajandhyala Apr 11, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This change is already on main 2 months ago. Do you have the latest main?

const int total_sequence_length = parameters.total_sequence_length_;


const TensorShapeVector probs_dims({parameters.batch_size_, parameters.num_heads_,
parameters.sequence_length_, total_sequence_length});
Expand Down
7 changes: 5 additions & 2 deletions onnxruntime/contrib_ops/webgpu/bert/flash_attention.cc
Original file line number Diff line number Diff line change
Expand Up @@ -420,8 +420,10 @@ Status ApplyFlashAttention(const Tensor* Q, const Tensor* K, const Tensor* V, co
FlashAttentionProgram program{"FlashAttention", has_attention_bias, parameters.head_size_, parameters.num_heads_};
program.AddInputs({{Q, ProgramTensorMetadataDependency::TypeAndRank, 4},
{present_key, ProgramTensorMetadataDependency::TypeAndRank, 4},
{present_value, ProgramTensorMetadataDependency::TypeAndRank, 4},
{attention_bias, ProgramTensorMetadataDependency::TypeAndRank}});
{present_value, ProgramTensorMetadataDependency::TypeAndRank, 4}});
if (has_attention_bias) {
program.AddInput({attention_bias, ProgramTensorMetadataDependency::TypeAndRank});
}
program.AddOutputs({{output, ProgramTensorMetadataDependency::TypeAndRank, 4}});
const float alpha = parameters.scale_ == 0.0f ? 1.f / sqrt(static_cast<float>(parameters.head_size_))
: parameters.scale_;
Expand All @@ -443,6 +445,7 @@ bool CanApplyFlashAttention(const Tensor* bias, const Tensor* present_key, const
return parameters.batch_size_ == 1 &&
bias == nullptr &&
parameters.sequence_length_ > 1 &&
parameters.qkv_format_ == Q_K_V_BSNH &&
context.Device().HasFeature(wgpu::FeatureName::Subgroups) &&
present_key != nullptr && present_value != nullptr && present_key->SizeInBytes() > 0 &&
present_value->SizeInBytes() > 0 && parameters.head_size_ % 4 == 0;
Expand Down
6 changes: 6 additions & 0 deletions onnxruntime/contrib_ops/webgpu/bert/group_query_attention.cc
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
#include "contrib_ops/webgpu/bert/attention_common.h"
#include "contrib_ops/webgpu/bert/group_query_attention.h"
#include "contrib_ops/webgpu/webgpu_contrib_kernels.h"
#include "contrib_ops/webgpu/bert/flash_attention.h"

#include "core/providers/webgpu/webgpu_supported_types.h"

Expand Down Expand Up @@ -74,6 +75,11 @@ Status GroupQueryAttention::ComputeInternal(onnxruntime::webgpu::ComputeContext&
Tensor* present_value = context.Output(2, present_kv_shape);
parameters.past_present_share_buffer_ = present_key != nullptr && present_value != nullptr && past_key != nullptr && past_value != nullptr && past_key->DataRaw() == present_key->DataRaw() && past_value->DataRaw() == present_value->DataRaw();

if (CanApplyFlashAttention(/*bias*/ nullptr, present_key, present_value, parameters, context)) {
return ApplyFlashAttention(query, key, value, /*attention_bias*/ nullptr, output, past_key, present_key, past_value,
present_value, parameters, context);
}

TensorShapeVector q_new_dims({parameters.batch_size_, parameters.num_heads_,
parameters.sequence_length_, parameters.head_size_});
TensorShape q_new_shape(q_new_dims);
Expand Down
Loading