The assignments of 'Deep Learning Programming' lecture (2024 autumn)
All labs contains
- pre-report: summarizing papers
- ipynb files : implemented algorithm with Pytorch
- final report : analyzing results
All reports are written in English except pre-report of Lab1.
We use latex(Overleaf) and BMVC Paper Templates for writing report.
-
Lab1: implementing VGGNet and ResNet architectures
-
Lab2: Object Detection with implementing YOLO architectures
-
Lab3: Object Detection with implementing Faster R-CNN architectures
-
Lab4: Semantic Segmentation with implementing Fully Convolutional Networks.
- Fully Convolutional Network: Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation, 2015.
- Learning Deconvolution Network: Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for semantic segmentation, 2015
-
Lab5: implementing Vision Transformer(ViT) model
-
Lab6: Style Transfer
-
Lab7: implementing Gradient-weighted Class Activation Mapping(Grad-CAM)
- CAM: Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for discriminative localization, 2015.
- Grad-CAM: Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 128(2):336-359, October 2019.ISSN 1573-1405. doi: 10.1007/s11263-019-01228-7.
-
Lab8: implementing CLIP
-
Lab9: Stable Diffusion fine-tuning with LoRA
- stable diffusion: Robin Rombach,Andreas Blattmann,Dominik Lorenz,Patrick Esser,and Björn Ommer. High-resolution image synthesis with latent diffusion models, 2022.
- LoRA : Edward J.Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,and Weizhu Chen.Lora:Low-rank adaptation of large language models,2021.