The results of the undergraduate research student
- ESP32 get acceleration and gyro sensor value from ICM20948 9-axis sensor using i2c communication
- before measurement, calibrating acceleration and gyro value (using first N values from starting)
- raspberry pi get acceleration and gyro value from ESP32 using bluetooth(ble)
- raspberry pi can pause the receving the values.
- anomaly detection on raspberry pi using LSTM autoencoder model(using tensorflow and tensorflow-lite)
- training data and anomaly data have generated using getTrainingData.py
- data is saved as .csv file
- esp32 send the values, and raspberry pi process the data and save the data.
- LSTM autoencoder model is generated with anomaly_detection.ipynb
- anomaly detection on esp32 using CNN autoencoder model(using tensorflow-lite)
- using esp32-tflite-micro
- measure task: measuring sensor values and sending the values to 'detection task'
- detection task: detecting anomalies from receving values from 'measure task'
- measure task send values using queue
- anomaly detection on esp32 using Depthwise-CNN autoencoder model(using tensorflow-lite)
- using esp32-tflite-micro
- measure task: measuring sensor values and sending the values to 'detection task'
- detection task: detecting anomalies from receving values from 'measure task'
- measure task send values using queue