Extending mlr3 to time series forecasting.
Important
This package is in an early stage of development and should be considered experimental. If you are interested in experimenting with it, we welcome your feedback!
Install the development version from GitHub:
# install.packages("pak")
pak::pak("mlr-org/mlr3forecast")
The goal of mlr3forecast is to extend mlr3 to time series forecasting. This is achieved by introducing new classes and methods for forecasting tasks, learners, and resamplers. For now the forecasting task and learner is restricted to time series regression tasks, but might be extended to classification tasks in the future.
We have two goals, one to support traditional forecasting learners and the other to support to support machine learning forecasting, i.e. using regression learners and applying them to forecasting tasks. The design of the latter is still in flux and may change.
First lets create a helper function to generate new data for forecasting tasks.
library(mlr3forecast)
#> Loading required package: mlr3
generate_newdata = function(task, n = 1L, resolution = "day") {
assert_count(n)
assert_string(resolution)
assert_choice(
resolution, c("second", "minute", "hour", "day", "week", "month", "quarter", "year")
)
order_cols = task$col_roles$order
max_index = max(task$data(cols = order_cols)[[1L]])
unit = switch(resolution,
second = "sec",
minute = "min",
hour = ,
day = ,
week = ,
month = ,
quarter = ,
year = identity(resolution),
stopf("Invalid resolution")
)
unit = sprintf("1 %s", unit)
index = seq(max_index, length.out = n + 1L, by = unit)
index = index[2:length(index)]
newdata = data.frame(index = index, target = rep(NA_real_, n), check.names = FALSE)
setNames(newdata, c(order_cols, task$target_names))
}
task = tsk("airpassengers")
newdata = generate_newdata(task, 12L, "month")
newdata
#> date passengers
#> 1 1961-01-01 NA
#> 2 1961-02-01 NA
#> 3 1961-03-01 NA
#> 4 1961-04-01 NA
#> 5 1961-05-01 NA
#> 6 1961-06-01 NA
#> 7 1961-07-01 NA
#> 8 1961-08-01 NA
#> 9 1961-09-01 NA
#> 10 1961-10-01 NA
#> 11 1961-11-01 NA
#> 12 1961-12-01 NA
Currently, we support native forecasting learners from the forecast package. In the future, we plan to support more forecasting learners.
task = tsk("airpassengers")
learner = lrn("fcst.auto_arima")$train(task)
#> Registered S3 method overwritten by 'quantmod':
#> method from
#> as.zoo.data.frame zoo
prediction = learner$predict(task, 140:144)
prediction$score(msr("regr.rmse"))
#> regr.rmse
#> 39.62379
newdata = generate_newdata(task, 12L, "month")
learner$predict_newdata(newdata, task)
#> <PredictionRegr> for 12 observations:
#> row_ids truth response
#> 1 NA 483.3799
#> 2 NA 490.9993
#> 3 NA 520.2773
#> --- --- ---
#> 10 NA 500.2729
#> 11 NA 507.3034
#> 12 NA 512.9829
# works with quantile response
learner = lrn("fcst.auto_arima",
predict_type = "quantiles",
quantiles = c(0.1, 0.15, 0.5, 0.85, 0.9),
quantile_response = 0.5
)$train(task)
learner$predict_newdata(newdata, task)
#> <PredictionRegr> for 12 observations:
#> row_ids truth q0.1 q0.15 q0.5 q0.85 q0.9 response
#> 1 NA 449.3201 455.8346 483.3799 510.9252 517.4397 483.3799
#> 2 NA 439.6752 449.4918 490.9993 532.5069 542.3235 490.9993
#> 3 NA 464.0693 474.8200 520.2773 565.7347 576.4854 520.2773
#> --- --- --- --- --- --- --- ---
#> 10 NA 440.1583 451.6562 500.2729 548.8896 560.3875 500.2729
#> 11 NA 446.7823 458.3580 507.3034 556.2489 567.8246 507.3034
#> 12 NA 452.1168 463.7584 512.9829 562.2074 573.8491 512.9829
library(mlr3learners)
task = tsk("airpassengers")
# we have to remove the date feature for regression learners
task$select(setdiff(task$feature_names, "date"))
flrn = ForecastLearner$new(lrn("regr.ranger"), 1:12)$train(task)
newdata = data.frame(passengers = rep(NA_real_, 3L))
prediction = flrn$predict_newdata(newdata, task)
prediction
#> <PredictionRegr> for 3 observations:
#> row_ids truth response
#> 1 NA 435.6505
#> 2 NA 437.5554
#> 3 NA 456.4960
prediction = flrn$predict(task, 142:144)
prediction
#> <PredictionRegr> for 3 observations:
#> row_ids truth response
#> 1 461 458.2301
#> 2 390 414.4641
#> 3 432 433.7197
prediction$score(msr("regr.rmse"))
#> regr.rmse
#> 14.24925
flrn = ForecastLearner$new(lrn("regr.ranger"), 1:12)
resampling = rsmp("forecast_holdout", ratio = 0.9)
rr = resample(task, flrn, resampling)
rr$aggregate(msr("regr.rmse"))
#> regr.rmse
#> 47.63902
resampling = rsmp("forecast_cv")
rr = resample(task, flrn, resampling)
rr$aggregate(msr("regr.rmse"))
#> regr.rmse
#> 25.78916
Or with some feature engineering using mlr3pipelines:
library(mlr3pipelines)
graph = ppl("convert_types", "Date", "POSIXct") %>>%
po("datefeatures",
param_vals = list(
week_of_year = FALSE, day_of_year = FALSE, day_of_month = FALSE, day_of_week = FALSE,
is_day = FALSE, hour = FALSE, minute = FALSE, second = FALSE
)
)
task = tsk("airpassengers")
flrn = ForecastLearner$new(lrn("regr.ranger"), 1:12)
glrn = as_learner(graph %>>% flrn)$train(task)
prediction = glrn$predict(task, 142:144)
prediction$score(msr("regr.rmse"))
#> regr.rmse
#> 15.60608
library(mlr3learners)
library(mlr3pipelines)
task = tsibbledata::vic_elec |>
as.data.table() |>
setnames(tolower) |>
_[
year(time) == 2014L,
.(
demand = sum(demand) / 1e3,
temperature = max(temperature),
holiday = any(holiday)
),
by = date
] |>
as_task_fcst(id = "vic_elec", target = "demand", order = "date")
graph = ppl("convert_types", "Date", "POSIXct") %>>%
po("datefeatures",
param_vals = list(
year = FALSE, is_day = FALSE, hour = FALSE, minute = FALSE, second = FALSE
)
)
flrn = ForecastLearner$new(lrn("regr.ranger"), 1:3)
glrn = as_learner(graph %>>% flrn)$train(task)
max_date = task$data()[.N, date]
newdata = data.frame(
date = max_date + 1:14,
demand = rep(NA_real_, 14L),
temperature = 26,
holiday = c(TRUE, rep(FALSE, 13L))
)
prediction = glrn$predict_newdata(newdata, task)
prediction
#> <PredictionRegr> for 14 observations:
#> row_ids truth response
#> 1 NA 186.2554
#> 2 NA 190.6231
#> 3 NA 184.2325
#> --- --- ---
#> 12 NA 212.5230
#> 13 NA 217.9358
#> 14 NA 219.2381
library(mlr3learners)
library(mlr3pipelines)
library(tsibble) # needs not be loaded for it to somehow work
task = tsibbledata::aus_livestock |>
as.data.table() |>
setnames(tolower) |>
_[, month := as.Date(month)] |>
_[, .(count = sum(count)), by = .(state, month)] |>
setorder(state, month) |>
as_task_fcst(id = "aus_livestock", target = "count", order = "month", key = "state")
graph = ppl("convert_types", "Date", "POSIXct") %>>%
po("datefeatures",
param_vals = list(
week_of_year = FALSE, day_of_week = FALSE, day_of_month = FALSE,
day_of_year = FALSE, is_day = FALSE, hour = FALSE, minute = FALSE,
second = FALSE
)
)
task = graph$train(task)[[1L]]
task$col_roles$key = "state"
flrn = ForecastLearner$new(lrn("regr.ranger"), 1:3)$train(task)
prediction = flrn$predict(task, 4460:4464)
prediction$score(msr("regr.rmse"))
#> regr.rmse
#> 23423.99
flrn = ForecastLearner$new(lrn("regr.ranger"), 1:3)
resampling = rsmp("forecast_holdout", ratio = 0.9)
rr = resample(task, flrn, resampling)
rr$aggregate(msr("regr.rmse"))
#> regr.rmse
#> 90577.72
In machine learning forecasting the difference between forecasting a time series and longitudinal data is often refered to local and global forecasting.
# TODO: find better task example, since the effect is minor here
graph = ppl("convert_types", "Date", "POSIXct") %>>%
po("datefeatures",
param_vals = list(
week_of_year = FALSE, day_of_week = FALSE, day_of_month = FALSE,
day_of_year = FALSE, is_day = FALSE, hour = FALSE, minute = FALSE,
second = FALSE
)
)
# local forecasting
task = tsibbledata::aus_livestock |>
as.data.table() |>
setnames(tolower) |>
_[, month := as.Date(month)] |>
_[state == "Western Australia", .(count = sum(count)), by = .(month)] |>
setorder(month) |>
as_task_fcst(id = "aus_livestock", target = "count", order = "month")
task = graph$train(task)[[1L]]
flrn = ForecastLearner$new(lrn("regr.ranger"), 1L)$train(task)
tab = task$backend$data(
rows = task$row_ids, cols = c(task$backend$primary_key, "month.year")
)
setnames(tab, c("row_id", "year"))
row_ids = tab[year >= 2015, row_id]
prediction = flrn$predict(task, row_ids)
prediction$score(msr("regr.rmse"))
#> regr.rmse
#> 32547.69
# global forecasting
task = tsibbledata::aus_livestock |>
as.data.table() |>
setnames(tolower) |>
_[, month := as.Date(month)] |>
_[, .(count = sum(count)), by = .(state, month)] |>
setorder(state, month) |>
as_task_fcst(id = "aus_livestock", target = "count", order = "month", key = "state")
task = graph$train(task)[[1L]]
task$col_roles$key = "state"
flrn = ForecastLearner$new(lrn("regr.ranger"), 1L)$train(task)
tab = task$backend$data(
rows = task$row_ids, cols = c(task$backend$primary_key, "month.year", "state")
)
setnames(tab, c("row_id", "year", "state"))
row_ids = tab[year >= 2015 & state == "Western Australia", row_id]
prediction = flrn$predict(task, row_ids)
prediction$score(msr("regr.rmse"))
#> regr.rmse
#> 30355.95
library(mlr3learners)
library(mlr3pipelines)
task = tsk("airpassengers")
pop = po("fcst.lag", lag = 1:12)
new_task = pop$train(list(task))[[1L]]
new_task$data()
#> passengers date passengers_lag_1 passengers_lag_2 passengers_lag_3
#> 1: 112 1949-01-01 NA NA NA
#> 2: 118 1949-02-01 112 NA NA
#> 3: 132 1949-03-01 118 112 NA
#> 4: 129 1949-04-01 132 118 112
#> 5: 121 1949-05-01 129 132 118
#> ---
#> 140: 606 1960-08-01 622 535 472
#> 141: 508 1960-09-01 606 622 535
#> 142: 461 1960-10-01 508 606 622
#> 143: 390 1960-11-01 461 508 606
#> 144: 432 1960-12-01 390 461 508
#> passengers_lag_4 passengers_lag_5 passengers_lag_6 passengers_lag_7
#> 1: NA NA NA NA
#> 2: NA NA NA NA
#> 3: NA NA NA NA
#> 4: NA NA NA NA
#> 5: 112 NA NA NA
#> ---
#> 140: 461 419 391 417
#> 141: 472 461 419 391
#> 142: 535 472 461 419
#> 143: 622 535 472 461
#> 144: 606 622 535 472
#> passengers_lag_8 passengers_lag_9 passengers_lag_10 passengers_lag_11
#> 1: NA NA NA NA
#> 2: NA NA NA NA
#> 3: NA NA NA NA
#> 4: NA NA NA NA
#> 5: NA NA NA NA
#> ---
#> 140: 405 362 407 463
#> 141: 417 405 362 407
#> 142: 391 417 405 362
#> 143: 419 391 417 405
#> 144: 461 419 391 417
#> passengers_lag_12
#> 1: NA
#> 2: NA
#> 3: NA
#> 4: NA
#> 5: NA
#> ---
#> 140: 559
#> 141: 463
#> 142: 407
#> 143: 362
#> 144: 405
task = tsk("airpassengers")
graph = po("fcst.lag", lag = 1:12) %>>%
ppl("convert_types", "Date", "POSIXct") %>>%
po("datefeatures",
param_vals = list(
week_of_year = FALSE, day_of_week = FALSE, day_of_month = FALSE,
day_of_year = FALSE, is_day = FALSE, hour = FALSE, minute = FALSE,
second = FALSE
)
)
flrn = ForecastRecursiveLearner$new(lrn("regr.ranger"))
glrn = as_learner(graph %>>% flrn)$train(task)
prediction = glrn$predict(task, 142:144)
prediction$score(msr("regr.rmse"))
#> regr.rmse
#> 26.33254
newdata = generate_newdata(task, 12L, "month")
glrn$predict_newdata(newdata, task)
#> <PredictionRegr> for 12 observations:
#> row_ids truth response
#> 1 NA 437.3861
#> 2 NA 436.5904
#> 3 NA 456.5291
#> --- --- ---
#> 10 NA 473.6440
#> 11 NA 441.5395
#> 12 NA 440.8554
Some common target transformations in forecasting are:
- differencing (WIP)
- log transformation, see example below
- power transformations such as Box-Cox and Yeo-Johnson currently only supported as feature transformation and not target
- scaling/normalization, available see here
trafo = po("targetmutate",
param_vals = list(
trafo = function(x) log(x),
inverter = function(x) list(response = exp(x$response))
)
)
graph = po("fcst.lag", lag = 1:12) %>>%
ppl("convert_types", "Date", "POSIXct") %>>%
po("datefeatures",
param_vals = list(
week_of_year = FALSE, day_of_week = FALSE, day_of_month = FALSE,
day_of_year = FALSE, is_day = FALSE, hour = FALSE, minute = FALSE,
second = FALSE
)
)
task = tsk("airpassengers")
flrn = ForecastRecursiveLearner$new(lrn("regr.ranger"))
glrn = as_learner(graph %>>% flrn)
pipeline = ppl("targettrafo", graph = glrn, trafo_pipeop = trafo)
glrn = as_learner(pipeline)$train(task)
prediction = glrn$predict(task, 142:144)
prediction$score(msr("regr.rmse"))
graph = po("fcst.lag", lag = 1:12) %>>%
ppl("convert_types", "Date", "POSIXct") %>>%
po("datefeatures",
param_vals = list(
week_of_year = FALSE, day_of_week = FALSE, day_of_month = FALSE,
day_of_year = FALSE, is_day = FALSE, hour = FALSE, minute = FALSE,
second = FALSE
)
)
task = tsk("airpassengers")
flrn = ForecastRecursiveLearner$new(lrn("regr.ranger"))
glrn = as_learner(graph %>>% flrn)
trafo = po("fcst.targetdiff", lag = 12L)
pipeline = ppl("targettrafo", graph = glrn, trafo_pipeop = trafo)
glrn = as_learner(pipeline)$train(task)
prediction = glrn$predict(task, 142:144)
prediction$score(msr("regr.rmse"))