-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchatgpt12.txt
96 lines (80 loc) · 3.76 KB
/
chatgpt12.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Q: I want to showcase a use case using a parallel plot. For that I need a simulation that takes in different parameters and calculates something. Then I want to display all results and their parameters in a parallelplot. I already have a package that creates a parallelplot based on a dataframe. Moreover, I want to use dr watson and julia. Please create fitting code and think of a good simulation that makes sense. The end dict should have the used parameters and the calculated values.
A: I'll help you create a simulation using Julia and Dr. Watson to generate data for a parallel plot. Let's design a simulation that explores the performance of different machine learning model hyperparameters on a dataset. This simulation:
Uses DrWatson for parameter combinations
Simulates projectile motion
Calculates max height, total distance, and flight time
Varies initial velocity, launch angle, air resistance, and gravity
Provides a realistic physics-based calculation with multiple parameters
Outputs include the parameters used and the calculated physical characteristics of the projectile's motion.
using DrWatson
using DataFrames
using Distributions
"""
Simulate projectile motion with varying parameters:
- Initial velocity
- Launch angle
- Air resistance coefficient
- Gravitational acceleration
"""
function projectile_simulation()
# Define parameter ranges
parameter_ranges = Dict(
:initial_velocity => 10.0:2.0:50.0, # m/s
:launch_angle => (0:10:90) * π/180, # radians
:air_resistance => 0.0:0.1:1.0, # drag coefficient
:gravity => 9.0:0.5:10.5 # m/s²
)
# Generate parameter combinations
parameter_combinations = collect(dict_list(parameter_ranges))
# Prepare results DataFrame
results = DataFrame(
initial_velocity = Float64[],
launch_angle = Float64[],
air_resistance = Float64[],
gravity = Float64[],
max_height = Float64[],
total_distance = Float64[],
time_of_flight = Float64[]
)
# Simulation of projectile motion with air resistance
for params in parameter_combinations
v0 = params[:initial_velocity]
θ = params[:launch_angle]
k = params[:air_resistance]
g = params[:gravity]
# Calculate components
vx0 = v0 * cos(θ)
vy0 = v0 * sin(θ)
# Analytical solution with air resistance
# Simplified model assuming linear air resistance
time_to_peak = vy0 / (g + k * vy0)
max_height = vy0 * time_to_peak - 0.5 * g * time_to_peak^2
# Total flight time (approximate)
total_time = 2 * time_to_peak
# Horizontal distance (with air resistance approximation)
total_distance = vx0 * total_time * (1 - k * total_time)
# Push results
push!(results, [
v0,
θ * 180/π, # convert back to degrees for readability
k,
g,
max_height,
total_distance,
total_time
])
end
return results
end
# Main execution
function main()
results = projectile_simulation()
println("Total parameter combinations: ", nrow(results))
println("\nSample results:")
display(first(results, 5))
# Optional statistical summary
println("\nStatistical Summary:")
display(describe(results))
end
# Run the simulation
main()