-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #109 from mrc-ide/expanding_model_outputs
Implementing ODIN sample without replacement
- Loading branch information
Showing
37 changed files
with
2,853 additions
and
2,743 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,7 @@ | ||
Package: squire | ||
Type: Package | ||
Title: SEIR transmission model of COVID-19 | ||
Version: 0.4.13 | ||
Version: 0.4.14 | ||
Authors@R: c( | ||
person("OJ", "Watson", email = "[email protected]", role = c("aut", "cre")), | ||
person("Patrick", "Walker", email = "[email protected]", role = c("aut")), | ||
|
@@ -25,7 +25,7 @@ Suggests: | |
rmarkdown | ||
RoxygenNote: 7.1.0 | ||
Imports: | ||
odin, | ||
odin (>= 1.0.3), | ||
dde (>= 1.0.2), | ||
dplyr, | ||
tidyr, | ||
|
@@ -40,4 +40,5 @@ Depends: R (>= 3.1.0) | |
VignetteBuilder: knitr | ||
Remotes: | ||
mrc-ide/dde, | ||
mrc-ide/odin, | ||
mrc-ide/odin.js |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
#' Align deaths | ||
#' | ||
#' Quick method to align a set of simulations to a cumulative deaths total | ||
#' | ||
#' @param deaths Number of observed deaths | ||
#' @param R0 R0 to be passed to \code{\link{run_explicit_SEEIR_model}}. | ||
#' Default = 3 | ||
#' @param R0_scan Vector or R0 values to sample from to introduce uncertainty | ||
#' in predictions. Default = NULL, which will not scan. If provided, the first | ||
#' value in \code{R0} will be drawn from \code{R0_scan} | ||
#' @param replicates Replicates to be passed to | ||
#' \code{\link{run_explicit_SEEIR_model}}. Default = 100 | ||
#' @param reporting_fraction Reporting fraction. Numeric for what proportion of | ||
#' the total deaths the reported deaths represent. E.g. 0.5 results in | ||
#' the model calibrating to twice the deaths provided by \code{deaths} | ||
#' @param seeding_age_groups Age groups for seeding | ||
#' @param min_seeding_cases Minimum seeding cases | ||
#' @param max_seeding_cases Maximum seeding cases | ||
#' @param ... Further aguments for \code{run_explicit_SEEIR_model()} | ||
#' @inheritParams run_explicit_SEEIR_model | ||
#' | ||
#' @export | ||
#' @return List of time adjusted squire_simulations | ||
align <- function(deaths, | ||
reporting_fraction = 1, | ||
country = NULL, | ||
population = NULL, | ||
contact_matrix_set = NULL, | ||
seeding_age_groups = c("35-40", "40-45", "45-50", "50-55"), | ||
min_seeding_cases = 5, | ||
max_seeding_cases = 50, | ||
R0 = 3, | ||
R0_scan = NULL, | ||
replicates = 100, | ||
...) { | ||
|
||
|
||
# argument checks | ||
assert_numeric(deaths) | ||
assert_numeric(reporting_fraction) | ||
assert_bounded(reporting_fraction, 0, 1) | ||
assert_greq(deaths, 1) | ||
assert_gr(R0[1], 1) | ||
|
||
# Handle country population args | ||
cpm <- parse_country_population_mixing_matrix(country = country, | ||
population = population, | ||
contact_matrix_set = contact_matrix_set) | ||
country <- cpm$country | ||
population <- cpm$population | ||
contact_matrix_set <- cpm$contact_matrix_set | ||
|
||
# getting indices for relevant age groups where seeding cases occurred | ||
age_groups <- c("0-5", "5-10", "10-15", "15-20", "20-25", "25-30", "30-35", | ||
"35-40", "40-45", "45-50", "50-55", "55-60", "60-65", "65-70", | ||
"70-75", "75-80", "80+") | ||
if (!all(seeding_age_groups %in% age_groups)) { | ||
stop("inputted age groups not valid") | ||
} | ||
age_group_indices <- which(age_groups %in% seeding_age_groups) | ||
num_age_groups <- length(age_group_indices) | ||
|
||
# adjust for reporting fraction | ||
true_deaths <- deaths / reporting_fraction | ||
|
||
# generating the seeding cases for each of the replicates | ||
E1_0 <- lapply(seq_len(replicates), function(x) { | ||
seeding_cases <- rep(0, length.out = length(population)) | ||
raw_seeding_cases <- round(stats::runif(n = 1, min = min_seeding_cases, max = max_seeding_cases)) | ||
seeding_cases[age_group_indices] <- as.vector(stats::rmultinom(1, | ||
size = raw_seeding_cases, | ||
prob = rep(1/num_age_groups, | ||
num_age_groups))) | ||
seeding_cases | ||
}) | ||
|
||
# sample our R0_scan | ||
if (!is.null(R0_scan)) { | ||
|
||
# check is numeric | ||
assert_numeric(R0_scan) | ||
|
||
# sample for R0_scan | ||
if (length(R0_scan) == 1) { | ||
R0_scan <- rep(R0_scan, replicates) | ||
} else { | ||
R0_scan <- sample(R0_scan, replicates, TRUE) | ||
} | ||
|
||
R0[1] <- R0_scan[1] | ||
} else { | ||
R0_scan <- rep(R0[1], replicates) | ||
} | ||
|
||
|
||
# run model with fixed day step (to match up with daily deaths) | ||
r <- run_explicit_SEEIR_model(population = population, | ||
contact_matrix_set = contact_matrix_set, | ||
replicates = 1, | ||
R0 = R0, | ||
...) | ||
|
||
# get model run outputs | ||
t <- r$output[,"step",1] | ||
nt <- length(t) | ||
|
||
# get the index for looking up D and R | ||
index <- odin_index(r$model) | ||
|
||
# check that this reached the deaths | ||
while (sum(r$output[nt, index$D, 1]) < deaths) { | ||
r <- run_explicit_SEEIR_model(population = population, | ||
contact_matrix_set = contact_matrix_set, | ||
replicates = 1, | ||
R0 = R0, | ||
...) | ||
} | ||
|
||
# assign to our results | ||
out <- list() | ||
out[[1]] <- r | ||
|
||
# what is the beta for updating in each rep | ||
beta <- r$model$contents()$beta_set | ||
|
||
# running and storing the model output for each of the different initial seeding cases | ||
for(i in 2:replicates) { | ||
r$model$set_user(E1_0 = E1_0[[i]]) | ||
beta[1] <- beta_est_explicit(dur_IMild = r$parameters$dur_IMild, | ||
dur_ICase = r$parameters$dur_ICase, | ||
prob_hosp = r$parameters$prob_hosp, | ||
mixing_matrix = process_contact_matrix_scaled_age(r$parameters$contact_matrix_set[[1]], r$parameters$population), | ||
R0 = R0_scan[i]) | ||
r$model$set_user(beta_set = beta) | ||
r$output <- r$model$run(t, replicate = 1) | ||
while (sum(r$output[nt, index$D, 1]) < deaths) { | ||
r$output <- r$model$run(t, replicate = 1) | ||
} | ||
out[[i]] <- r | ||
} | ||
|
||
# Get deaths timepoint | ||
deaths_sim <- lapply(out, format_output, var_select = "D") | ||
times <- sapply(deaths_sim, function(x){ | ||
x$t[x$y >= true_deaths][1] | ||
}) | ||
|
||
# Adjust time | ||
for(i in 1:length(out)){ | ||
out[[i]]$output[,"time",] <- out[[i]]$output[,"time",] - times[i] | ||
} | ||
|
||
outarray <- array(NA, dim = c(nrow(out[[1]]$output), ncol(out[[1]]$output), replicates)) | ||
for(i in 1:length(out)){ | ||
outarray[,,i] <- out[[i]]$output | ||
} | ||
colnames(outarray) <- names(r$output[1,,1]) | ||
r$output <- outarray | ||
r$parameters$replicates <- replicates | ||
r$parameters$R0_scan <- R0_scan | ||
|
||
return(r) | ||
} | ||
|
||
|
Oops, something went wrong.