Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
131 changes: 131 additions & 0 deletions python/x0512.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-

### DATA 622 Week 10 Homework
### Youqing Xiang
### user.id: x0512

"""
# Summary

# There are three main parts in this file:
# Part I: imageProcess function
# Part II: 10 methods used in image process
# Part III: the main function as an example of how to run the code

# For imageProcess function, it starts from the legend file (image infor file),
# and then search for the image in image file and do image transformation.
# So, this function would ignore any image in image file if it is not or
# not correctly recorded in legend file.
"""

import os
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img

def imageProcess(datagen,image_dir,legend_dir):
"""A function for image transformation.

input:
datagen: the method for image process
image_dir: the image file direction
legend_dir: the image infor (legend) file direction

output:
a dataframe: including the original image information for image process
transformed images: saved in the new_images folder
"""
# read legend file
legend = pd.read_csv(legend_dir)
image_list = legend['image']
primary_list = legend['Primary']
secondary_list = legend['Secondary']
n = len(image_list)
n = 5

# create new_images folder for transformed images
if not os.path.exists('new_images'):
os.makedirs('new_images')

# image transformation and saving original information for transformed images
columns = ['user.id', 'image', 'Primary','Secondary']
legend_result = pd.DataFrame(columns=columns)

for i in range(0,n):
try:
img = load_img(os.path.join(image_dir, image_list[i]))
except:
print 'image reading error'
continue

df = pd.DataFrame([[legend['user.id'][i],legend['image'][i],
legend['Primary'][i],legend['Secondary'][i]]],
columns=columns)
legend_result = legend_result.append(df)

img = img_to_array(img)
img = img.reshape((1,) + img.shape)

name = legend['image'][i].split('.')[0]


for image in datagen.flow(img,batch_size=1,save_to_dir='new_images',
save_prefix=name):
break

return legend_result


# 10 methods could be used for image process
datagen1 = ImageDataGenerator(shear_range = 0.1)

datagen2 = ImageDataGenerator(rotation_range = 5)

datagen3 = ImageDataGenerator(width_shift_range = 0.1)

datagen4 = ImageDataGenerator(height_shift_range = 0.1)

datagen5 = ImageDataGenerator(shear_range = 0.1,
rotation_range = 5)

datagen6 = ImageDataGenerator(width_shift_range = 0.1,
rotation_range = 5)

datagen7 = ImageDataGenerator(rotation_range = 5,
height_shift_range = 0.1)

datagen8 = ImageDataGenerator(width_shift_range = 0.1,
height_shift_range = 0.1)

datagen9 = ImageDataGenerator(shear_range = 0.1,
height_shift_range = 0.1)

datagen10 = ImageDataGenerator(shear_range = 0.1,
width_shift_range = 0.1)

datagens = [datagen1,datagen2,datagen3,datagen4,datagen5,
datagen6,datagen7,datagen8,datagen9,datagen10]



if __name__ == "__main__":
image_dir = 'Xiang_image'
legend_dir = 'Xiang_data/legend.csv'

columns = ['user.id', 'image', 'Primary','Secondary']
legend = pd.DataFrame(columns=columns)

for datagen in datagens:
df = imageProcess(datagen,image_dir,legend_dir)
legend = pd.concat([legend,df])

newlist = pd.Series(os.listdir('new_images'))
legend = legend.sort_values(by='image')
legend.reset_index(drop=True,inplace=True)

legend['image'] = newlist

if not os.path.exists('new_data'):
os.makedirs('new_data')

legend.to_csv('new_data/new_legend.csv')