@@ -39,7 +39,7 @@ class EddyMotionEstimator:
3939
4040 @staticmethod
4141 def estimate (
42- dwdata ,
42+ data ,
4343 * ,
4444 align_kwargs = None ,
4545 iter_kwargs = None ,
@@ -53,7 +53,7 @@ def estimate(
5353
5454 Parameters
5555 ----------
56- dwdata : :obj:`~eddymotion.dmri.DWI`
56+ data : :obj:`~eddymotion.dmri.DWI`
5757 The target DWI dataset, represented by this tool's internal
5858 type. The object is used in-place, and will contain the estimated
5959 parameters in its ``em_affines`` property, as well as the rotated
@@ -88,7 +88,7 @@ def estimate(
8888 "seed" : None ,
8989 "bvals" : None , # TODO: extract b-vals here if pertinent
9090 } | iter_kwargs
91- iter_kwargs ["size" ] = len (dwdata )
91+ iter_kwargs ["size" ] = len (data )
9292
9393 iterfunc = getattr (eutils , f'{ iter_kwargs .pop ("strategy" , "random" )} _iterator' )
9494 index_order = list (iterfunc (** iter_kwargs ))
@@ -107,9 +107,9 @@ def estimate(
107107
108108 for i_iter , model in enumerate (models ):
109109 # When downsampling these need to be set per-level
110- bmask_img = _prepare_brainmask_data (dwdata .brainmask , dwdata .affine )
110+ bmask_img = _prepare_brainmask_data (data .brainmask , data .affine )
111111
112- _prepare_kwargs (dwdata , kwargs )
112+ _prepare_kwargs (data , kwargs )
113113
114114 single_model = model .lower () in (
115115 "b0" ,
@@ -130,7 +130,7 @@ def estimate(
130130 model = model ,
131131 ** kwargs ,
132132 )
133- dwmodel .fit (dwdata .dataobj , n_jobs = n_jobs )
133+ dwmodel .fit (data .dataobj , n_jobs = n_jobs )
134134
135135 with TemporaryDirectory () as tmp_dir :
136136 print (f"Processing in <{ tmp_dir } >" )
@@ -141,12 +141,12 @@ def estimate(
141141 pbar .set_description_str (
142142 f"Pass { i_iter + 1 } /{ n_iter } | Fit and predict b-index <{ i } >"
143143 )
144- data_train , data_test = lovo_split (dwdata , i , with_b0 = True )
144+ data_train , data_test = lovo_split (data , i , with_b0 = True )
145145 grad_str = f"{ i } , { data_test [1 ][:3 ]} , b={ int (data_test [1 ][3 ])} "
146146 pbar .set_description_str (f"[{ grad_str } ], { n_jobs } jobs" )
147147
148148 if not single_model : # A true LOGO estimator
149- if hasattr (dwdata , "gradients" ):
149+ if hasattr (data , "gradients" ):
150150 kwargs ["gtab" ] = data_train [1 ]
151151 # Factory creates the appropriate model and pipes arguments
152152 dwmodel = ModelFactory .init (
@@ -166,7 +166,7 @@ def estimate(
166166
167167 # prepare data for running ANTs
168168 fixed , moving = _prepare_registration_data (
169- data_test [0 ], predicted , dwdata .affine , i , ptmp_dir , reg_target_type
169+ data_test [0 ], predicted , data .affine , i , ptmp_dir , reg_target_type
170170 )
171171
172172 pbar .set_description_str (
@@ -177,11 +177,11 @@ def estimate(
177177 fixed ,
178178 moving ,
179179 bmask_img ,
180- dwdata .em_affines ,
181- dwdata .affine ,
182- dwdata .dataobj .shape [:3 ],
180+ data .em_affines ,
181+ data .affine ,
182+ data .dataobj .shape [:3 ],
183183 data_test [1 ][3 ],
184- dwdata .fieldmap ,
184+ data .fieldmap ,
185185 i_iter ,
186186 i ,
187187 ptmp_dir ,
@@ -190,10 +190,10 @@ def estimate(
190190 )
191191
192192 # update
193- dwdata .set_transform (i , xform .matrix )
193+ data .set_transform (i , xform .matrix )
194194 pbar .update ()
195195
196- return dwdata .em_affines
196+ return data .em_affines
197197
198198
199199def _prepare_brainmask_data (brainmask , affine ):
@@ -219,7 +219,7 @@ def _prepare_brainmask_data(brainmask, affine):
219219 return bmask_img
220220
221221
222- def _prepare_kwargs (dwdata , kwargs ):
222+ def _prepare_kwargs (data , kwargs ):
223223 """Prepare the keyword arguments depending on the DWI data: add attributes corresponding to
224224 the ``brainmask``, ``bzero``, ``gradients``, ``frame_time``, and ``total_duration`` DWI data
225225 properties.
@@ -228,24 +228,24 @@ def _prepare_kwargs(dwdata, kwargs):
228228
229229 Parameters
230230 ----------
231- dwdata : :class:`eddymotion.data.dmri.DWI`
231+ data : :class:`eddymotion.data.dmri.DWI`
232232 DWI data object.
233233 kwargs : :obj:`dict`
234234 Keyword arguments.
235235 """
236236 from eddymotion .data .filtering import advanced_clip as _advanced_clip
237237
238- if dwdata .brainmask is not None :
239- kwargs ["mask" ] = dwdata .brainmask
238+ if data .brainmask is not None :
239+ kwargs ["mask" ] = data .brainmask
240240
241- if hasattr (dwdata , "bzero" ) and dwdata .bzero is not None :
242- kwargs ["S0" ] = _advanced_clip (dwdata .bzero )
241+ if hasattr (data , "bzero" ) and data .bzero is not None :
242+ kwargs ["S0" ] = _advanced_clip (data .bzero )
243243
244- if hasattr (dwdata , "gradients" ):
245- kwargs ["gtab" ] = dwdata .gradients
244+ if hasattr (data , "gradients" ):
245+ kwargs ["gtab" ] = data .gradients
246246
247- if hasattr (dwdata , "frame_time" ):
248- kwargs ["timepoints" ] = dwdata .frame_time
247+ if hasattr (data , "frame_time" ):
248+ kwargs ["timepoints" ] = data .frame_time
249249
250- if hasattr (dwdata , "total_duration" ):
251- kwargs ["xlim" ] = dwdata .total_duration
250+ if hasattr (data , "total_duration" ):
251+ kwargs ["xlim" ] = data .total_duration
0 commit comments