Skip to content

Commit

Permalink
Skip over uninitialized DenseResourceAttrs in verifiers (#3041)
Browse files Browse the repository at this point in the history
Elided elements are uninitialized DenseResourceAttrs, without these changes MLIR containing them can not be parsed, as the verifiers crash when encountering them.

Signed-off-by: Rickert, Jonas <[email protected]>
  • Loading branch information
jorickert authored Jan 14, 2025
1 parent 0183ad9 commit 7b0dd65
Show file tree
Hide file tree
Showing 8 changed files with 82 additions and 2 deletions.
4 changes: 4 additions & 0 deletions src/Dialect/ONNX/ONNXOps/Math/Scatter.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,10 @@ LogicalResult ONNXScatterElementsOp::verify() {
if (dataDimAtAxis >= 0) {
if (ElementsAttr valueAttribute =
getElementAttributeFromONNXValue(indices)) {
if (isElementAttrUninitializedDenseResource(valueAttribute)) {
return success(); // Return success to allow the parsing of MLIR with
// elided attributes
}
for (IntegerAttr value : valueAttribute.getValues<IntegerAttr>()) {
int64_t index = value.getInt();
if (index >= -dataDimAtAxis && index < dataDimAtAxis)
Expand Down
12 changes: 12 additions & 0 deletions src/Dialect/ONNX/ONNXOps/OpHelper.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/DialectResourceBlobManager.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Path.h"
Expand Down Expand Up @@ -872,4 +873,15 @@ std::string getNodeNameInPresenceOfOpt(Operation *op, bool useFileLine) {
return "NOTSET";
}

//===----------------------------------------------------------------------===//
// Support for DenseElementsAttr.
//===----------------------------------------------------------------------===//

bool isElementAttrUninitializedDenseResource(mlir::ElementsAttr elementsAttr) {
const auto denseResourceElementsAttr =
mlir::dyn_cast<DenseResourceElementsAttr>(elementsAttr);
return denseResourceElementsAttr &&
!denseResourceElementsAttr.getRawHandle().getBlob();
}

} // namespace onnx_mlir
8 changes: 8 additions & 0 deletions src/Dialect/ONNX/ONNXOps/OpHelper.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -380,6 +380,14 @@ bool isIdentityReshape(mlir::Value input, mlir::Value output,
std::string getNodeNameInPresenceOfOpt(
mlir::Operation *op, bool useFileLine = true);

//===----------------------------------------------------------------------===//
// Support for DenseElementsAttr.
//===----------------------------------------------------------------------===//

/// Returns true if elementsAttr is a DenseResourceAttr with a blob that can not
/// be received
bool isElementAttrUninitializedDenseResource(mlir::ElementsAttr elementsAttr);

#include "src/Dialect/ONNX/ONNXOps/OpHelper.hpp.inc"

} // namespace onnx_mlir
Expand Down
4 changes: 4 additions & 0 deletions src/Dialect/ONNX/ONNXOps/Sequence/SplitToSequence.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,10 @@ LogicalResult ONNXSplitToSequenceOp::verify() {
if (splitRank > 1)
return emitOpError() << ": split has rank " << splitRank << " > 1";
if (ElementsAttr entries = getElementAttributeFromONNXValue(splitValue)) {
if (isElementAttrUninitializedDenseResource(entries)) {
return success(); // Return success to allow the parsing of MLIR with
// elided attributes
}
if (splitRank == 0) {
auto scalar = getScalarValue<int64_t>(entries, splitType);
if (scalar <= 0)
Expand Down
4 changes: 4 additions & 0 deletions src/Dialect/ONNX/ONNXOps/Tensor/ConstantOfShape.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,10 @@ LogicalResult ONNXConstantOfShapeOp::verify() {
if (auto constantOp = getONNXConstantOp(input)) {
ElementsAttr valueAttribute =
mlir::cast<ElementsAttr>(constantOp.getValueAttr());
if (isElementAttrUninitializedDenseResource(valueAttribute)) {
return success(); // Return success to allow the parsing of MLIR with
// elided attributes
}
// Get repeat values from valueAttribute.
auto valueIt = valueAttribute.getValues<IntegerAttr>().begin();
for (int i = 0; i < inputShape[0]; ++i) {
Expand Down
11 changes: 9 additions & 2 deletions src/Dialect/ONNX/ONNXOps/Tensor/GatherElements.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -71,8 +71,13 @@ LogicalResult ONNXGatherElementsOp::verify() {
// along axis of size s.
ArrayRef<int64_t> dataShape = dataType.getShape();
const int64_t dataDimAtAxis = dataShape[axis];
if (dataDimAtAxis >= 0)
if (ElementsAttr valueAttribute = getElementAttributeFromONNXValue(indices))
if (dataDimAtAxis >= 0) {
if (ElementsAttr valueAttribute =
getElementAttributeFromONNXValue(indices)) {
if (isElementAttrUninitializedDenseResource(valueAttribute)) {
return success(); // Return success to allow the parsing of MLIR with
// elided attributes
}
for (IntegerAttr value : valueAttribute.getValues<IntegerAttr>()) {
int64_t index = value.getInt();
if (index >= -dataDimAtAxis && index < dataDimAtAxis)
Expand All @@ -83,6 +88,8 @@ LogicalResult ONNXGatherElementsOp::verify() {
onnx_mlir::Diagnostic::Range<int64_t>(
-dataDimAtAxis, dataDimAtAxis - 1));
}
}
}

return success();
}
Expand Down
4 changes: 4 additions & 0 deletions src/Dialect/ONNX/ONNXOps/Tensor/GatherND.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -144,6 +144,10 @@ LogicalResult ONNXGatherNDOp::verify() {
// All values in 'indices' are expected to satisfy the inequality:
// -data.shape[b + i] <= indices[...,i] <= (data.shape[b + i]-1)].
if (ElementsAttr valueAttribute = getElementAttributeFromONNXValue(indices)) {
if (isElementAttrUninitializedDenseResource(valueAttribute)) {
return success(); // Return success to allow the parsing of MLIR with
// elided attributes
}
int flatIndex = 0;
for (IntegerAttr value : valueAttribute.getValues<IntegerAttr>()) {
int64_t indexValue = value.getInt();
Expand Down
37 changes: 37 additions & 0 deletions test/mlir/onnx/invalid.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -182,6 +182,15 @@ func.func @test_constantofshape_verifier_4() -> tensor<2xi64> {

// -----

func.func @test_constantofshape_elided() -> tensor<2xi64> {
// Tests that we do not crash on elided elements
%0 = onnx.Constant dense_resource<__elided__> : tensor<2xi64>
%1 = "onnx.ConstantOfShape"(%0) : (tensor<2xi64>) -> tensor<2xi64>
"onnx.Return"(%1) : (tensor<2xi64>) -> ()
}

// -----

func.func @test_flatten_verifier_1(%arg0 : tensor<5x5x1x32xf32>) -> tensor<*xf32> {
// expected-error @+1 {{onnx.Flatten: 'axis' value is 5, accepted range is [-4, 4]}}
%1 = "onnx.Flatten"(%arg0) {axis = 5 : si64} : (tensor<5x5x1x32xf32>) -> tensor<*xf32>
Expand Down Expand Up @@ -214,6 +223,15 @@ func.func @test_gatherElements_verifier_2(%data: tensor<2x2xf32>, %indices: tens

// -----

func.func @test_gatherElements_verifier_elided(%data: tensor<12x14x1024xf32>) -> tensor<12x14x14xf32> {
// Tests that we do not crash on elided elements
%indices = onnx.Constant dense_resource<__elided__> : tensor<12x14x14xi64>
%1 = "onnx.GatherElements"(%data, %indices) {axis = -1 : si64} : (tensor<12x14x1024xf32>, tensor<12x14x14xi64>) -> tensor<12x14x14xf32>
"onnx.Return"(%1) : (tensor<12x14x14xf32>) -> ()
}

// -----

func.func @test_hardmax_verifier_1(%arg0: tensor<2x2xf32>) -> tensor<*xf32> {
// expected-error @+1 {{onnx.Hardmax: 'axis' value is 3, accepted range is [-2, 1]}}
%1 = "onnx.Hardmax"(%arg0) {axis = 3: si64} : (tensor<2x2xf32>) -> tensor<*xf32>
Expand Down Expand Up @@ -307,6 +325,16 @@ func.func @test_gatherND_verifier_6(%arg0 : tensor<3x4x4x4xf32>) -> tensor<*xf32
// expected-error @+2 {{onnx.GatherND: 'indices[0]' value is 3, accepted range is [-3, 2]}}
%indices = "onnx.Constant"() {value = dense<[3,2,2]> : tensor<3xi64>} : () -> tensor<3x3x2xi64>
%1 = "onnx.GatherND"(%arg0, %indices) : (tensor<3x4x4x4xf32>, tensor<3x3x2xi64>) -> tensor<*xf32>
"onnx.Return"(%1) : (tensor<*xf32>) -> ()
}

// -----

func.func @test_gatherND_verifier_elided(%arg0 : tensor<3x4x4x4xf32>) -> tensor<*xf32> {
// Test that we do not crash on elided elements
%indices = onnx.Constant dense_resource<__elided__> : tensor<3x3x2xi64>
%1 = "onnx.GatherND"(%arg0, %indices) : (tensor<3x4x4x4xf32>, tensor<3x3x2xi64>) -> tensor<*xf32>
"onnx.Return"(%1) : (tensor<*xf32>) -> ()
}

// -----
Expand Down Expand Up @@ -580,6 +608,15 @@ func.func @test_splitToSequence_verifier_6(%arg0: tensor<2x2xf32>) -> !onnx.Seq<

// -----

func.func @test_splitToSequence_verifier_elided(%arg0: tensor<2x2xf32>) -> !onnx.Seq<tensor<*xf32>> {
// Tests that we do not crash on elided elements
%0 = onnx.Constant dense_resource<__elided__> : tensor<i64>
%1 = "onnx.SplitToSequence"(%arg0, %0) : (tensor<2x2xf32>, tensor<i64>) -> !onnx.Seq<tensor<*xf32>>
"onnx.Return"(%1) : (!onnx.Seq<tensor<*xf32>>) -> ()
}

// -----

func.func @test_topK_verifier_1(%arg0: tensor<3x4xi64>, %arg1: tensor<1xi64>) -> (tensor<*xf32>, tensor<*xi64>) {
// expected-error @+1 {{onnx.TopK: 'axis' value is 2, accepted range is [-2, 1]}}
%1, %2 = "onnx.TopK"(%arg0, %arg1) {axis = 2 : si64, largest = 1 : si64, sorted = 1 : si64} : (tensor<3x4xi64>, tensor<1xi64>) -> (tensor<*xf32>, tensor<*xi64>)
Expand Down

0 comments on commit 7b0dd65

Please sign in to comment.