Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 14 additions & 14 deletions pcdet/datasets/augmentor/database_sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,24 +178,24 @@ def copy_paste_to_image_kitti(self, data_dict, crop_feat, gt_number, point_idxes
paste_order = boxes3d[:,0].argsort()
paste_order = paste_order[::-1]
else:
paste_order = np.arange(len(boxes3d),dtype=np.int)
paste_order = np.arange(len(boxes3d),dtype=np.int_)

if 'reverse' in kitti_img_aug_type:
paste_order = paste_order[::-1]

paste_mask = -255 * np.ones(image.shape[:2], dtype=np.int)
fg_mask = np.zeros(image.shape[:2], dtype=np.int)
overlap_mask = np.zeros(image.shape[:2], dtype=np.int)
depth_mask = np.zeros((*image.shape[:2], 2), dtype=np.float)
paste_mask = -255 * np.ones(image.shape[:2], dtype=np.int_)
fg_mask = np.zeros(image.shape[:2], dtype=np.int_)
overlap_mask = np.zeros(image.shape[:2], dtype=np.int_)
depth_mask = np.zeros((*image.shape[:2], 2), dtype=np.float64)
points_2d, depth_2d = data_dict['calib'].lidar_to_img(data_dict['points'][:,:3])
points_2d[:,0] = np.clip(points_2d[:,0], a_min=0, a_max=image.shape[1]-1)
points_2d[:,1] = np.clip(points_2d[:,1], a_min=0, a_max=image.shape[0]-1)
points_2d = points_2d.astype(np.int)
points_2d = points_2d.astype(np.int_)
for _order in paste_order:
_box2d = boxes2d[_order]
image[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = crop_feat[_order]
overlap_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] += \
(paste_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] > 0).astype(np.int)
(paste_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] > 0).astype(np.int_)
paste_mask[_box2d[1]:_box2d[3],_box2d[0]:_box2d[2]] = _order

if 'cover' in kitti_img_aug_use_type:
Expand Down Expand Up @@ -255,22 +255,22 @@ def collect_image_crops_kitti(self, info, data_dict, obj_points, sampled_gt_boxe
sampled_gt_boxes[idx] = box3d_lidar[0]
sampled_gt_boxes2d[idx] = box2d[0]

obj_idx = idx * np.ones(len(obj_points), dtype=np.int)
obj_idx = idx * np.ones(len(obj_points), dtype=np.int_)

# copy crops from images
img_path = self.root_path / f'training/image_2/{info["image_idx"]}.png'
raw_image = io.imread(img_path)
raw_image = raw_image.astype(np.float32)
raw_center = info['bbox'].reshape(2,2).mean(0)
new_box = sampled_gt_boxes2d[idx].astype(np.int)
new_box = sampled_gt_boxes2d[idx].astype(np.int_)
new_shape = np.array([new_box[2]-new_box[0], new_box[3]-new_box[1]])
raw_box = np.concatenate([raw_center-new_shape/2, raw_center+new_shape/2]).astype(np.int)
raw_box = np.concatenate([raw_center-new_shape/2, raw_center+new_shape/2]).astype(np.int_)
raw_box[0::2] = np.clip(raw_box[0::2], a_min=0, a_max=raw_image.shape[1])
raw_box[1::2] = np.clip(raw_box[1::2], a_min=0, a_max=raw_image.shape[0])
if (raw_box[2]-raw_box[0])!=new_shape[0] or (raw_box[3]-raw_box[1])!=new_shape[1]:
new_center = new_box.reshape(2,2).mean(0)
new_shape = np.array([raw_box[2]-raw_box[0], raw_box[3]-raw_box[1]])
new_box = np.concatenate([new_center-new_shape/2, new_center+new_shape/2]).astype(np.int)
new_box = np.concatenate([new_center-new_shape/2, new_center+new_shape/2]).astype(np.int_)

img_crop2d = raw_image[raw_box[1]:raw_box[3],raw_box[0]:raw_box[2]] / 255

Expand Down Expand Up @@ -320,8 +320,8 @@ def initilize_image_aug_dict(self, data_dict, gt_boxes_mask):
pass
elif self.img_aug_type == 'kitti':
obj_index_list, crop_boxes2d = [], []
gt_number = gt_boxes_mask.sum().astype(np.int)
gt_boxes2d = data_dict['gt_boxes2d'][gt_boxes_mask].astype(np.int)
gt_number = gt_boxes_mask.sum().astype(np.int_)
gt_boxes2d = data_dict['gt_boxes2d'][gt_boxes_mask].astype(np.int_)
gt_crops2d = [data_dict['images'][_x[1]:_x[3],_x[0]:_x[2]] for _x in gt_boxes2d]

img_aug_gt_dict = {
Expand Down Expand Up @@ -351,7 +351,7 @@ def collect_image_crops(self, img_aug_gt_dict, info, data_dict, obj_points, samp
def copy_paste_to_image(self, img_aug_gt_dict, data_dict, points):
if self.img_aug_type == 'kitti':
obj_points_idx = np.concatenate(img_aug_gt_dict['obj_index_list'], axis=0)
point_idxes = -1 * np.ones(len(points), dtype=np.int)
point_idxes = -1 * np.ones(len(points), dtype=np.int_)
point_idxes[:obj_points_idx.shape[0]] = obj_points_idx

data_dict['gt_boxes2d'] = np.concatenate([img_aug_gt_dict['gt_boxes2d'], np.array(img_aug_gt_dict['crop_boxes2d'])], axis=0)
Expand Down
6 changes: 3 additions & 3 deletions pcdet/models/backbones_2d/base_bev_backbone.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def __init__(self, model_cfg, input_channels):
nn.ReLU()
))
else:
stride = np.round(1 / stride).astype(np.int)
stride = np.round(1 / stride).astype(np.int_)
self.deblocks.append(nn.Sequential(
nn.Conv2d(
num_filters[idx], num_upsample_filters[idx],
Expand Down Expand Up @@ -158,7 +158,7 @@ def __init__(self, model_cfg, **kwargs):
nn.ReLU()
))
else:
stride = np.round(1 / stride).astype(np.int)
stride = np.round(1 / stride).astype(np.int_)
self.deblocks.append(nn.Sequential(
nn.Conv2d(
num_filters[idx], num_upsample_filters[idx],
Expand Down Expand Up @@ -296,7 +296,7 @@ def __init__(self, model_cfg, input_channels):
nn.ReLU()
))
else:
stride = np.round(1 / stride).astype(np.int)
stride = np.round(1 / stride).astype(np.int_)
self.deblocks.append(nn.Sequential(
nn.Conv2d(
num_filters[idx], num_upsample_filters[idx],
Expand Down