Skip to content

Commit fa5f976

Browse files
authored
Merge pull request #943 from paulvojta/main
Bug fixes
2 parents 8a99b0f + 9f53e80 commit fa5f976

File tree

10 files changed

+27
-39
lines changed
  • OpenProblemLibrary
    • Indiana
    • Michigan/Chap4Sec7
    • Rochester/setDerivatives2_5Implicit
    • UVA-Stew5e/setUVA-Stew5e-C02S09-DerivAsFunct
    • Utah
      • AP_Calculus_I/set9_Basic_Methods_of_Integration
      • Calculus_II/set6_Indeterminate_Forms_and_Improper_Integrals
    • WHFreeman/Rogawski_Calculus_Early_Transcendentals_Second_Edition/9_Introduction_to_Differential_Equations/9.5_First-Order_Linear_Equations
    • ma122DB

10 files changed

+27
-39
lines changed

OpenProblemLibrary/Indiana/Indiana_setIntegrals3Definite/s4_4_27.pg

-2
Original file line numberDiff line numberDiff line change
@@ -70,8 +70,6 @@ done term-by-term by rewriting the integral as:
7070
\int_{$d1}^{$c1} \frac{{$a1}x^2 + $b1}{\sqrt{x}} dx =
7171
\int_{$d1}^{$c1} \left( \frac{{$a1}x^2}{\sqrt{x}} + \frac{$b1}{\sqrt{x}} \right) dx
7272
\]
73-
74-
\]
7573
Then, we can find the derivative, which is:
7674
\[
7775
F(x) = \frac{2}{5}\left(\frac{{$a1}x^3}{\sqrt{x}}\right)

OpenProblemLibrary/Indiana/Indiana_setSeries5IntegralTest/ur_sr_5_11.pg

+5-13
Original file line numberDiff line numberDiff line change
@@ -144,7 +144,7 @@ $m = random(2,6,1);
144144

145145
qa(~~@questions, ~~@answers,
146146
"\( \displaystyle \sum_{n=1}^\infty n e^{-$a n} \)" , "CONV",
147-
"\( \displaystyle \sum_{n=1}^\infty n e^{$a n} \)" , "DIV",
147+
"\( \displaystyle \sum_{n=1}^\infty n e^{$a n} \)" , "NA",
148148
"\( \displaystyle \sum_{n=1}^\infty \frac{\ln{($d n)}}{n} \)" , "DIV",
149149
"\( \displaystyle \sum_{n=1}^\infty \frac{$b}{n \ln ($c n)} \)" , "DIV",
150150
"\( \displaystyle \sum_{n=1}^\infty \frac{$b}{n (\ln ($c n))^{$m}} \)" , "CONV",
@@ -213,18 +213,10 @@ EOT
213213

214214
if ($slice[$i] == 1) {
215215
&SOLUTION(EV3(<<'EOT'));
216-
($j). The function \(f(x) = x e^{$a x}\) is continuous and increasing because it is the product of
217-
continuous increasing functions, so \(f(x) \geq f(1)=e^{$a}\) when \(1\leq x < \infty\). Thus
218-
\[ \int_1^{\infty} f(x) \; dx \geq \int_1^{\infty} e^{$a} \; dx = \infty.\]
219-
Since \(f\) is increasing it follows that
220-
\[ f(n) \geq \int_{n-1}^n f(x)\; dx \text{ for each } n=2,3,4,\cdots\]
221-
thus one can apply the integral test:
222-
\[ \begin{aligned} \sum_{n=1}^{\infty} f(n) &= f(1) + \sum_{n=2}^{\infty}f(n) \\
223-
&\geq f(1)+\sum_{n=2}^{\infty} \int_{n-1}^n f(x)\; dx \\
224-
&= f(1) + \int_1^{\infty} f(x)\; dx \\
225-
& = \infty,
226-
\end{aligned}\]
227-
which shows that the series diverges.
216+
($j). The function \(f(x) = x e^{$a x}\) is increasing because it is
217+
the product of positive increasing functions. Therefore it is not
218+
a decreasing function, so the Integral Test does not apply, and
219+
the correct answer is NA.
228220

229221
EOT
230222
}

OpenProblemLibrary/Michigan/Chap4Sec7/Q29.pg

+1-1
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ TEXT(beginproblem());
5050
Context()->texStrings;
5151
BEGIN_TEXT
5252

53-
If \( x \), and \( y \) are both positive, evaluate
53+
If \( x \) and \( y \) are both positive, evaluate
5454
$PAR
5555
\(\displaystyle \lim_{p\rightarrow 0}\frac{\ln($a\, x^p + $b\, y^p)}{p} =\)
5656
\{ ans_rule(35) \}

OpenProblemLibrary/Rochester/setDerivatives2_5Implicit/s2_6_19_mo.pg

+1-1
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ Use implicit differentiation to find an equation
104104
of the tangent line to the curve \( $F = $k \)
105105
at the point \( $P1 \).
106106
$BR $BR
107-
The \{ helpLink(equation) \} \{ans_rule(10) \}
107+
The \{ helpLink(equation) \} \{ans_rule(20) \}
108108
defines the tangent line to the curve at the
109109
point \( $P1 \).
110110
END_TEXT

OpenProblemLibrary/UVA-Stew5e/setUVA-Stew5e-C02S09-DerivAsFunct/2-9-24.pg

+2-6
Original file line numberDiff line numberDiff line change
@@ -50,12 +50,8 @@ shortcuts!) to find the derivative of the function
5050
\[
5151
f(x) = \frac{$a x + $b}{$c x + $d}.
5252
\]
53-
Then state the domain of the function and the domain of the derivative.
54-
$BR
55-
$BBOLD Note: $EBOLD When entering interval notation in WeBWorK, use
56-
$BBOLD I $EBOLD for \(\infty\), $BBOLD -I $EBOLD for \(-\infty\),
57-
and $BBOLD U $EBOLD for the union symbol. If the set is empty,
58-
enter "{}" without the quotation marks.
53+
Then, using \{ helpLink('interval notation') \}, state the domain of
54+
the function and the domain of the derivative.
5955
$BR
6056
$BR
6157
\(f'(x)\) = \{ans_rule(25) \}

OpenProblemLibrary/Utah/AP_Calculus_I/set9_Basic_Methods_of_Integration/1220s11p1.pg

+1-1
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ TEXT(beginproblem());
2828

2929
TEXT(EV2(<<EOT));
3030
$PAR
31-
\(\int \sin^2(3x) \hbox{d}x = \) \{ans_rule(30)\}.
31+
\(\int \sin^2(3x) \hbox{d}x = \) \{ans_rule(30)\} \( {}+C \).
3232
EOT
3333
$ans = "-1/6 cos(3 x) sin(3 x) + x/2";
3434
ANS(fun_cmp($ans, limits=>[1,3], mode=>"antider", vars=>"x"));

OpenProblemLibrary/Utah/Calculus_II/set6_Indeterminate_Forms_and_Improper_Integrals/set6_pr15.pg

+4-3
Original file line numberDiff line numberDiff line change
@@ -25,10 +25,11 @@ loadMacros(
2525

2626
TEXT(beginproblem());
2727
$showPartialCorrectAnswers = 1;
28-
$e = 2.718;
28+
$e = E();
2929

3030
TEXT(EV2(<<EOT));
31-
In all these problems, write I if the limit is either \(+\infty \) or \(-\infty \).
31+
In both of these problems, write I if the limit is either \(+\infty \)
32+
or \(-\infty \).
3233
$PAR
3334
Find the following limits:
3435
$PAR
@@ -37,7 +38,7 @@ $BR
3738
\{ans_rule(40)\}.
3839
$PAR
3940

40-
(b) \( \lim_{x\rightarrow 0} x^{\sin(x)} = \)
41+
(b) \( \lim_{x\rightarrow 0^{+}} x^{\sin(x)} = \)
4142
$BR \{ans_rule(40)\}.
4243
$PAR
4344

OpenProblemLibrary/WHFreeman/Rogawski_Calculus_Early_Transcendentals_Second_Edition/9_Introduction_to_Differential_Equations/9.5_First-Order_Linear_Equations/9.5.35.pg

+1-1
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ Consider a series circuit consisting of a resistor of \(R\) ohms, an inductor of
4848

4949
Find the solution to this equation with the initial condition \( I(0) = 0 \), assuming that \( R = $R \, \Omega \), \( L = $L \) H, and \( V(t) \) is constant with \( V(t) = $V \) V.
5050
$PAR
51-
\( V(t) = \) \{ans_rule()\}
51+
\( I(t) = \) \{ans_rule()\}
5252
END_TEXT
5353
Context()->normalStrings;
5454

OpenProblemLibrary/ma122DB/set10/s4_10_75.pg

+10-10
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ Answer: \{ans_rule(30) \}
4444
END_TEXT
4545

4646
$t1 = -$v1/32;
47-
$ans = "$v1*$v1/64";
47+
$ans = $v1*$v1/64;
4848
ANS(num_cmp($ans));
4949

5050

@@ -55,10 +55,10 @@ position at time \( t \) (\( s(t) \)), instantaneous velocity
5555
at time \( t \) (\( v(t) \)), and acceleration at time \( t\) (\(a(t)\)).
5656
This relationship is given by:
5757
$BR$BR
58-
\[ \begin{array}
59-
v(t) = s'(t) \\
60-
a(t) = v'(t) = s''(t) \\
61-
\end{array}
58+
\[ \begin{split}
59+
v(t) &= s'(t) \\
60+
a(t) &= v'(t) = s''(t) \\
61+
\end{split}
6262
\]
6363
$BR$BR
6464
With this in mind, this problem becomes an exercise in finding
@@ -92,11 +92,11 @@ and we know the stone struck the ground (so its position was 0) at
9292
\( t = !{$t1:%5.3f} \), we can solve the following equation for \( C_2 \).
9393
$BR$BR
9494
\[
95-
\begin{array}
96-
s(!{$t1:%5.3f}) = 0 \\
97-
-16(!{$t1:%5.3f})^2 + C_2 = 0 \\
98-
C_2 = !{$ans:%5.3f} \\
99-
\end{array}
95+
\begin{split}
96+
s(!{$t1:%5.3f}) &= 0 \\
97+
-16(!{$t1:%5.3f})^2 + C_2 &= 0 \\
98+
C_2 &= !{$ans:%5.3f} \\
99+
\end{split}
100100
\]
101101
Now, since we want to know the height from which the stone was dropped, we
102102
just need to find its position at time \( t = 0 \). But this is \( s(0) = -16(0)^2+ $ans \)

OpenProblemLibrary/ma122DB/set8/s4_3_27.pg

+2-1
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,8 @@ $showPartialCorrectAnswers = 0;
3838
BEGIN_TEXT
3939
$BR$BR \{image("s4_3_27.gif")\} $BR$BR
4040
For the function \(f\) given above, determine whether the following conditions
41-
are true. Input $BITALIC T $EITALIC if the condition is ture, otherwise input $BITALIC F $EITALIC . $BR$BR
41+
are true. Input $BITALIC T $EITALIC if the condition is true,
42+
otherwise input $BITALIC F $EITALIC . $BR$BR
4243
(a) \( f'(x)<0 \) if \(0<x<2\); \{ans_rule(10) \} $BR
4344
(b) \( f'(x)>0 \) if \(x>2\); \{ans_rule(10) \} $BR
4445
(c) \( f''(x)<0 \) if \(0\le x<1\); \{ans_rule(10) \} $BR

0 commit comments

Comments
 (0)