-
Notifications
You must be signed in to change notification settings - Fork 679
Bump keras from 3.11.3 to 3.12.0 in /xla/backends/cpu/benchmarks/e2e/gemma2/keras #33278
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Bump keras from 3.11.3 to 3.12.0 in /xla/backends/cpu/benchmarks/e2e/gemma2/keras #33278
Conversation
Bumps [keras](https://github.com/keras-team/keras) from 3.11.3 to 3.12.0. - [Release notes](https://github.com/keras-team/keras/releases) - [Commits](keras-team/keras@v3.11.3...v3.12.0) --- updated-dependencies: - dependency-name: keras dependency-version: 3.12.0 dependency-type: direct:production ... Signed-off-by: dependabot[bot] <[email protected]>
penpornk
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The dependencies in this file actually shouldn't be updated. But since this file has been automatically updated a few times already, we'll just keep updating. (Anyone wanting the exact version requirements can always look at the file history.)
…hmarks/e2e/gemma2/keras Imported from GitHub PR #33278 Bumps [keras](https://github.com/keras-team/keras) from 3.11.3 to 3.12.0. <details> <summary>Release notes</summary> <p><em>Sourced from <a href="https://github.com/keras-team/keras/releases">keras's releases</a>.</em></p> <blockquote> <h2>Keras 3.12.0</h2> <h2>Highlights</h2> <h3>Keras has a new model distillation API!</h3> <p>You now have access to an easy-to-use API for distilling large models into small models while minimizing performance drop on a reference dataset -- compatible with all existing Keras models. You can specify a range of different distillation losses, or create your own losses. The API supports multiple concurrent distillation losses at the same time.</p> <p>Example:</p> <pre lang="python"><code># Load a model to distill teacher = ... # This is the model we want to distill it into student = ... <h1>Configure the process</h1> <p>distiller = Distiller( teacher=teacher, student=student, distillation_losses=LogitsDistillation(temperature=3.0), ) distiller.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] )</p> <h1>Train the distilled model</h1> <p>distiller.fit(x_train, y_train, epochs=10) </code></pre></p> <h3>Keras supports GPTQ quantization!</h3> <p>GPTQ is now built into the Keras API. GPTQ is a post-training, weights-only quantization method that compresses a model to int4 layer by layer. For each layer, it uses a second-order method to update weights while minimizing the error on a calibration dataset.</p> <p>Learn how to use it <a href="https://keras.io/guides/gptq_quantization_in_keras/">in this guide</a>.</p> <p>Example:</p> <pre lang="python"><code>model = keras_hub.models.Gemma3CausalLM.from_preset("gemma3_1b") gptq_config = keras.quantizers.GPTQConfig( dataset=calibration_dataset, tokenizer=model.preprocessor.tokenizer, weight_bits=4, group_size=128, num_samples=256, sequence_length=256, hessian_damping=0.01, symmetric=False, </tr></table> </code></pre> </blockquote> <p>... (truncated)</p> </details> <details> <summary>Commits</summary> <ul> <li><a href="https://github.com/keras-team/keras/commit/adbfd13426a0da9864d9a0fcd5be5eed74ca341f"><code>adbfd13</code></a> Add warning to <code>set_backend</code> and more detailed example. (<a href="https://redirect.github.com/keras-team/keras/issues/21787">#21787</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/70598b7903314f7ceace49264de97f1ee91230a8"><code>70598b7</code></a> Fix typo in Distiller docstring</li> <li><a href="https://github.com/keras-team/keras/commit/eecd34f406709e6ce44c5d94be32d8d81c7fe13d"><code>eecd34f</code></a> Fix: <code>keras.ops.quantile</code> works with tf graph execution (<a href="https://redirect.github.com/keras-team/keras/issues/21782">#21782</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/c2bc6cfcc79d958d2e5a9bc0c829486d5a7fd0ac"><code>c2bc6cf</code></a> Suport keras.op.view() to view the same data bitwise at a new dtype (<a href="https://redirect.github.com/keras-team/keras/issues/21763">#21763</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/10b51ce5a5054eb9bcddfab405ac9075fb1f1ca7"><code>10b51ce</code></a> Make confusion metrics compilable. (<a href="https://redirect.github.com/keras-team/keras/issues/21775">#21775</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/18f79d69c9443b21ac4ac902a5f808237708cdde"><code>18f79d6</code></a> Fix negative index handling in MultiHeadAttention attention_axes (<a href="https://redirect.github.com/keras-team/keras/issues/21721">#21721</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/18e0364cbcd1bfe26e43a4986df59bbf758e94a8"><code>18e0364</code></a> Support for extracting volume patches (<a href="https://redirect.github.com/keras-team/keras/issues/21759">#21759</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/dc5e42cca4fc966916552154d2edfb9f9aef3fcf"><code>dc5e42c</code></a> fix sas metrics in jax <code>fit</code> (<a href="https://redirect.github.com/keras-team/keras/issues/21765">#21765</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/1ba3b8f896fbbba30bdcff65483b1dafa356c604"><code>1ba3b8f</code></a> Fix discretization discrepancy (<a href="https://redirect.github.com/keras-team/keras/issues/21769">#21769</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/53987a768def7fb4d6222d5da25484ea4ed76360"><code>53987a7</code></a> Document that <code>set_backend</code> requires re-importing keras. (<a href="https://redirect.github.com/keras-team/keras/issues/21764">#21764</a>)</li> <li>Additional commits viewable in <a href="https://github.com/keras-team/keras/compare/v3.11.3...v3.12.0">compare view</a></li> </ul> </details> <br /> [](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) --- <details> <summary>Dependabot commands and options</summary> <br /> You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show <dependency name> ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) You can disable automated security fix PRs for this repo from the [Security Alerts page](https://github.com/openxla/xla/network/alerts). </details> Copybara import of the project: -- b37d94a by dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>: Bump keras in /xla/backends/cpu/benchmarks/e2e/gemma2/keras Bumps [keras](https://github.com/keras-team/keras) from 3.11.3 to 3.12.0. - [Release notes](https://github.com/keras-team/keras/releases) - [Commits](keras-team/keras@v3.11.3...v3.12.0) --- updated-dependencies: - dependency-name: keras dependency-version: 3.12.0 dependency-type: direct:production ... Signed-off-by: dependabot[bot] <[email protected]> Merging this change closes #33278 FUTURE_COPYBARA_INTEGRATE_REVIEW=#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a PiperOrigin-RevId: 826026367
…hmarks/e2e/gemma2/keras Imported from GitHub PR openxla/xla#33278 Bumps [keras](https://github.com/keras-team/keras) from 3.11.3 to 3.12.0. <details> <summary>Release notes</summary> <p><em>Sourced from <a href="https://github.com/keras-team/keras/releases">keras's releases</a>.</em></p> <blockquote> <h2>Keras 3.12.0</h2> <h2>Highlights</h2> <h3>Keras has a new model distillation API!</h3> <p>You now have access to an easy-to-use API for distilling large models into small models while minimizing performance drop on a reference dataset -- compatible with all existing Keras models. You can specify a range of different distillation losses, or create your own losses. The API supports multiple concurrent distillation losses at the same time.</p> <p>Example:</p> <pre lang="python"><code># Load a model to distill teacher = ... # This is the model we want to distill it into student = ... <h1>Configure the process</h1> <p>distiller = Distiller( teacher=teacher, student=student, distillation_losses=LogitsDistillation(temperature=3.0), ) distiller.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] )</p> <h1>Train the distilled model</h1> <p>distiller.fit(x_train, y_train, epochs=10) </code></pre></p> <h3>Keras supports GPTQ quantization!</h3> <p>GPTQ is now built into the Keras API. GPTQ is a post-training, weights-only quantization method that compresses a model to int4 layer by layer. For each layer, it uses a second-order method to update weights while minimizing the error on a calibration dataset.</p> <p>Learn how to use it <a href="https://keras.io/guides/gptq_quantization_in_keras/">in this guide</a>.</p> <p>Example:</p> <pre lang="python"><code>model = keras_hub.models.Gemma3CausalLM.from_preset("gemma3_1b") gptq_config = keras.quantizers.GPTQConfig( dataset=calibration_dataset, tokenizer=model.preprocessor.tokenizer, weight_bits=4, group_size=128, num_samples=256, sequence_length=256, hessian_damping=0.01, symmetric=False, </tr></table> </code></pre> </blockquote> <p>... (truncated)</p> </details> <details> <summary>Commits</summary> <ul> <li><a href="https://github.com/keras-team/keras/commit/adbfd13426a0da9864d9a0fcd5be5eed74ca341f"><code>adbfd13</code></a> Add warning to <code>set_backend</code> and more detailed example. (<a href="https://redirect.github.com/keras-team/keras/issues/21787">#21787</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/70598b7903314f7ceace49264de97f1ee91230a8"><code>70598b7</code></a> Fix typo in Distiller docstring</li> <li><a href="https://github.com/keras-team/keras/commit/eecd34f406709e6ce44c5d94be32d8d81c7fe13d"><code>eecd34f</code></a> Fix: <code>keras.ops.quantile</code> works with tf graph execution (<a href="https://redirect.github.com/keras-team/keras/issues/21782">#21782</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/c2bc6cfcc79d958d2e5a9bc0c829486d5a7fd0ac"><code>c2bc6cf</code></a> Suport keras.op.view() to view the same data bitwise at a new dtype (<a href="https://redirect.github.com/keras-team/keras/issues/21763">#21763</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/10b51ce5a5054eb9bcddfab405ac9075fb1f1ca7"><code>10b51ce</code></a> Make confusion metrics compilable. (<a href="https://redirect.github.com/keras-team/keras/issues/21775">#21775</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/18f79d69c9443b21ac4ac902a5f808237708cdde"><code>18f79d6</code></a> Fix negative index handling in MultiHeadAttention attention_axes (<a href="https://redirect.github.com/keras-team/keras/issues/21721">#21721</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/18e0364cbcd1bfe26e43a4986df59bbf758e94a8"><code>18e0364</code></a> Support for extracting volume patches (<a href="https://redirect.github.com/keras-team/keras/issues/21759">#21759</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/dc5e42cca4fc966916552154d2edfb9f9aef3fcf"><code>dc5e42c</code></a> fix sas metrics in jax <code>fit</code> (<a href="https://redirect.github.com/keras-team/keras/issues/21765">#21765</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/1ba3b8f896fbbba30bdcff65483b1dafa356c604"><code>1ba3b8f</code></a> Fix discretization discrepancy (<a href="https://redirect.github.com/keras-team/keras/issues/21769">#21769</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/53987a768def7fb4d6222d5da25484ea4ed76360"><code>53987a7</code></a> Document that <code>set_backend</code> requires re-importing keras. (<a href="https://redirect.github.com/keras-team/keras/issues/21764">#21764</a>)</li> <li>Additional commits viewable in <a href="https://github.com/keras-team/keras/compare/v3.11.3...v3.12.0">compare view</a></li> </ul> </details> <br /> [](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) --- <details> <summary>Dependabot commands and options</summary> <br /> You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show <dependency name> ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) You can disable automated security fix PRs for this repo from the [Security Alerts page](https://github.com/openxla/xla/network/alerts). </details> Copybara import of the project: -- b37d94a32428d62ed3e73765f4e7b61bc6ed8549 by dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>: Bump keras in /xla/backends/cpu/benchmarks/e2e/gemma2/keras Bumps [keras](https://github.com/keras-team/keras) from 3.11.3 to 3.12.0. - [Release notes](https://github.com/keras-team/keras/releases) - [Commits](keras-team/keras@v3.11.3...v3.12.0) --- updated-dependencies: - dependency-name: keras dependency-version: 3.12.0 dependency-type: direct:production ... Signed-off-by: dependabot[bot] <[email protected]> Merging this change closes #33278 FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 826026367
|
OK, I won't notify you again about this release, but will get in touch when a new version is available. If you'd rather skip all updates until the next major or minor version, let me know by commenting If you change your mind, just re-open this PR and I'll resolve any conflicts on it. |
…ue_ptr<BufferAllocation>>` in DynamicSliceThunk. `BufferAllocation::Slice` stores a raw pointer to the corresponding `BufferAllocation`. Now we keep the embedded thunk allocations alive by stroing unique_ptrs in the wrapping DynamicSliceThunk. The current design makes it hard to reuse the existing infrastructure, specifically to serialize `DynamicSliceThunk`. To address this, I'm changing fake_allocations to be `std::vector<BufferAllocation>`. The move constructor `std::vector::vector(std::vector&&)` is guaranteed to have constant time complexity and therefore it steals the internal data buffer from the source vector. This infers that the pointers to allocations are kept stable as long as: * we preallocate the vector size * we never copy the vector, but move To make it safer for later usage, we can explicitely prohibid BufferAllocation to be copyable/moveable. I'm going to do this in the following cl. FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 825635601
…all the places where we need them all together. The refactoring uses the well known approach for the compilers. The positive parts are: 1) we significantly reduce the amount of the boilerplate. 2) we force engineers to use the same names for the ops in all the places. 3) we avoid the errors when someone misses to add a special handling for a new op. This change introduces `UNARI_OPS_WITHOUT_ACCURACY` and `UNARY_OPS_WITH_ACCURACY` macros in `hlo_opcode.h` to list unary operations. These lists are in use in many places where we work with the unary ops the identical way. The common cases are: define a case statement in a switch for every unary op. define the function definition/declaration for every unary op. etc. FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 794210068
FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 825786647
FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 823685699
FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 823661932
FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 823676717
FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 823680002
FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 823687804
…hmarks/e2e/gemma2/keras Imported from GitHub PR openxla/xla#33278 Bumps [keras](https://github.com/keras-team/keras) from 3.11.3 to 3.12.0. <details> <summary>Release notes</summary> <p><em>Sourced from <a href="https://github.com/keras-team/keras/releases">keras's releases</a>.</em></p> <blockquote> <h2>Keras 3.12.0</h2> <h2>Highlights</h2> <h3>Keras has a new model distillation API!</h3> <p>You now have access to an easy-to-use API for distilling large models into small models while minimizing performance drop on a reference dataset -- compatible with all existing Keras models. You can specify a range of different distillation losses, or create your own losses. The API supports multiple concurrent distillation losses at the same time.</p> <p>Example:</p> <pre lang="python"><code># Load a model to distill teacher = ... # This is the model we want to distill it into student = ... <h1>Configure the process</h1> <p>distiller = Distiller( teacher=teacher, student=student, distillation_losses=LogitsDistillation(temperature=3.0), ) distiller.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] )</p> <h1>Train the distilled model</h1> <p>distiller.fit(x_train, y_train, epochs=10) </code></pre></p> <h3>Keras supports GPTQ quantization!</h3> <p>GPTQ is now built into the Keras API. GPTQ is a post-training, weights-only quantization method that compresses a model to int4 layer by layer. For each layer, it uses a second-order method to update weights while minimizing the error on a calibration dataset.</p> <p>Learn how to use it <a href="https://keras.io/guides/gptq_quantization_in_keras/">in this guide</a>.</p> <p>Example:</p> <pre lang="python"><code>model = keras_hub.models.Gemma3CausalLM.from_preset("gemma3_1b") gptq_config = keras.quantizers.GPTQConfig( dataset=calibration_dataset, tokenizer=model.preprocessor.tokenizer, weight_bits=4, group_size=128, num_samples=256, sequence_length=256, hessian_damping=0.01, symmetric=False, </tr></table> </code></pre> </blockquote> <p>... (truncated)</p> </details> <details> <summary>Commits</summary> <ul> <li><a href="https://github.com/keras-team/keras/commit/adbfd13426a0da9864d9a0fcd5be5eed74ca341f"><code>adbfd13</code></a> Add warning to <code>set_backend</code> and more detailed example. (<a href="https://redirect.github.com/keras-team/keras/issues/21787">#21787</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/70598b7903314f7ceace49264de97f1ee91230a8"><code>70598b7</code></a> Fix typo in Distiller docstring</li> <li><a href="https://github.com/keras-team/keras/commit/eecd34f406709e6ce44c5d94be32d8d81c7fe13d"><code>eecd34f</code></a> Fix: <code>keras.ops.quantile</code> works with tf graph execution (<a href="https://redirect.github.com/keras-team/keras/issues/21782">#21782</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/c2bc6cfcc79d958d2e5a9bc0c829486d5a7fd0ac"><code>c2bc6cf</code></a> Suport keras.op.view() to view the same data bitwise at a new dtype (<a href="https://redirect.github.com/keras-team/keras/issues/21763">#21763</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/10b51ce5a5054eb9bcddfab405ac9075fb1f1ca7"><code>10b51ce</code></a> Make confusion metrics compilable. (<a href="https://redirect.github.com/keras-team/keras/issues/21775">#21775</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/18f79d69c9443b21ac4ac902a5f808237708cdde"><code>18f79d6</code></a> Fix negative index handling in MultiHeadAttention attention_axes (<a href="https://redirect.github.com/keras-team/keras/issues/21721">#21721</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/18e0364cbcd1bfe26e43a4986df59bbf758e94a8"><code>18e0364</code></a> Support for extracting volume patches (<a href="https://redirect.github.com/keras-team/keras/issues/21759">#21759</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/dc5e42cca4fc966916552154d2edfb9f9aef3fcf"><code>dc5e42c</code></a> fix sas metrics in jax <code>fit</code> (<a href="https://redirect.github.com/keras-team/keras/issues/21765">#21765</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/1ba3b8f896fbbba30bdcff65483b1dafa356c604"><code>1ba3b8f</code></a> Fix discretization discrepancy (<a href="https://redirect.github.com/keras-team/keras/issues/21769">#21769</a>)</li> <li><a href="https://github.com/keras-team/keras/commit/53987a768def7fb4d6222d5da25484ea4ed76360"><code>53987a7</code></a> Document that <code>set_backend</code> requires re-importing keras. (<a href="https://redirect.github.com/keras-team/keras/issues/21764">#21764</a>)</li> <li>Additional commits viewable in <a href="https://github.com/keras-team/keras/compare/v3.11.3...v3.12.0">compare view</a></li> </ul> </details> <br /> [](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) --- <details> <summary>Dependabot commands and options</summary> <br /> You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show <dependency name> ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) You can disable automated security fix PRs for this repo from the [Security Alerts page](https://github.com/openxla/xla/network/alerts). </details> Copybara import of the project: -- b37d94a32428d62ed3e73765f4e7b61bc6ed8549 by dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>: Bump keras in /xla/backends/cpu/benchmarks/e2e/gemma2/keras Bumps [keras](https://github.com/keras-team/keras) from 3.11.3 to 3.12.0. - [Release notes](https://github.com/keras-team/keras/releases) - [Commits](keras-team/keras@v3.11.3...v3.12.0) --- updated-dependencies: - dependency-name: keras dependency-version: 3.12.0 dependency-type: direct:production ... Signed-off-by: dependabot[bot] <[email protected]> Merging this change closes #33278 PiperOrigin-RevId: 826053656
FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 825269732
…er for serialization FUTURE_COPYBARA_INTEGRATE_REVIEW=openxla/xla#33278 from openxla:dependabot/pip/xla/backends/cpu/benchmarks/e2e/gemma2/keras/keras-3.12.0 b37d94a32428d62ed3e73765f4e7b61bc6ed8549 PiperOrigin-RevId: 826074509
Bumps keras from 3.11.3 to 3.12.0.
Release notes
Sourced from keras's releases.
... (truncated)
Commits
adbfd13Add warning toset_backendand more detailed example. (#21787)70598b7Fix typo in Distiller docstringeecd34fFix:keras.ops.quantileworks with tf graph execution (#21782)c2bc6cfSuport keras.op.view() to view the same data bitwise at a new dtype (#21763)10b51ceMake confusion metrics compilable. (#21775)18f79d6Fix negative index handling in MultiHeadAttention attention_axes (#21721)18e0364Support for extracting volume patches (#21759)dc5e42cfix sas metrics in jaxfit(#21765)1ba3b8fFix discretization discrepancy (#21769)53987a7Document thatset_backendrequires re-importing keras. (#21764)Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting
@dependabot rebase.Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR:
@dependabot rebasewill rebase this PR@dependabot recreatewill recreate this PR, overwriting any edits that have been made to it@dependabot mergewill merge this PR after your CI passes on it@dependabot squash and mergewill squash and merge this PR after your CI passes on it@dependabot cancel mergewill cancel a previously requested merge and block automerging@dependabot reopenwill reopen this PR if it is closed@dependabot closewill close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually@dependabot show <dependency name> ignore conditionswill show all of the ignore conditions of the specified dependency@dependabot ignore this major versionwill close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)@dependabot ignore this minor versionwill close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)@dependabot ignore this dependencywill close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)You can disable automated security fix PRs for this repo from the Security Alerts page.