Skip to content

Dynamically generate Apache Airflow DAGs from YAML configuration files

License

Notifications You must be signed in to change notification settings

paramjitsingh006/dag-factory

This branch is 134 commits behind astronomer/dag-factory:main.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

1b67026 · Feb 8, 2022
May 14, 2021
Feb 8, 2022
Jul 26, 2021
Nov 21, 2018
Jan 11, 2021
Aug 25, 2021
Nov 21, 2018
Jul 25, 2021
Feb 8, 2022
Aug 18, 2021
Nov 21, 2018
Nov 21, 2018
Jan 11, 2021
Aug 21, 2021
Aug 18, 2021
Dec 7, 2021

Repository files navigation

dag-factory

Github Actions Coverage PyPi Code Style Downloads

dag-factory is a library for dynamically generating Apache Airflow DAGs from YAML configuration files.

Installation

To install dag-factory run pip install dag-factory. It requires Python 3.6.0+ and Apache Airflow 1.10+.

Usage

After installing dag-factory in your Airflow environment, there are two steps to creating DAGs. First, we need to create a YAML configuration file. For example:

example_dag1:
  default_args:
    owner: 'example_owner'
    start_date: 2018-01-01  # or '2 days'
    end_date: 2018-01-05
    retries: 1
    retry_delay_sec: 300
  schedule_interval: '0 3 * * *'
  concurrency: 1
  max_active_runs: 1
  dagrun_timeout_sec: 60
  default_view: 'tree'  # or 'graph', 'duration', 'gantt', 'landing_times'
  orientation: 'LR'  # or 'TB', 'RL', 'BT'
  description: 'this is an example dag!'
  on_success_callback_name: print_hello
  on_success_callback_file: /usr/local/airflow/dags/print_hello.py
  on_failure_callback_name: print_hello
  on_failure_callback_file: /usr/local/airflow/dags/print_hello.py
  tasks:
    task_1:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 1'
    task_2:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 2'
      dependencies: [task_1]
    task_3:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 3'
      dependencies: [task_1]

Then in the DAGs folder in your Airflow environment you need to create a python file like this:

from airflow import DAG
import dagfactory

dag_factory = dagfactory.DagFactory("/path/to/dags/config_file.yml")

dag_factory.clean_dags(globals())
dag_factory.generate_dags(globals())

And this DAG will be generated and ready to run in Airflow!

screenshot

Notes

HttpSensor (since 0.10.0)

The package airflow.sensors.http_sensor works with all supported versions of Airflow. In Airflow 2.0+, the new package name can be used in the operator value: airflow.providers.http.sensors.http

The following example shows response_check logic in a python file:

task_2:
      operator: airflow.sensors.http_sensor.HttpSensor
      http_conn_id: 'test-http'
      method: 'GET'
      response_check_name: check_sensor
      response_check_file: /path/to/example1/http_conn.py
      dependencies: [task_1]

The response_check logic can also be provided as a lambda:

task_2:
      operator: airflow.sensors.http_sensor.HttpSensor
      http_conn_id: 'test-http'
      method: 'GET'
      response_check_lambda: 'lambda response: "ok" in reponse.text'
      dependencies: [task_1]

Benefits

  • Construct DAGs without knowing Python
  • Construct DAGs without learning Airflow primitives
  • Avoid duplicative code
  • Everyone loves YAML! ;)

Contributing

Contributions are welcome! Just submit a Pull Request or Github Issue.

About

Dynamically generate Apache Airflow DAGs from YAML configuration files

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.3%
  • Makefile 2.2%
  • Dockerfile 1.1%
  • Shell 0.4%