Skip to content

Conversation

tolgakurtuluss
Copy link

@tolgakurtuluss tolgakurtuluss commented Jun 23, 2025

Hi,

I wanted to contribute this valuable collection with my own repo. This repo is built with Gradio, empowers users to effortlessly upload various document types, extract their raw text content, and then apply a diverse set of LangChain text splitting (chunking) methods.

Hope you find it useful.

Summary by CodeRabbit

  • New Features

    • Introduced an interactive web application for uploading documents and applying various text chunking methods with customizable parameters.
    • Supports multiple file formats and displays chunked results in JSON along with dynamically generated Python code examples.
  • Documentation

    • Added comprehensive README with usage instructions, feature overview, screenshots, and contribution guidelines.
  • Chores

    • Added a requirements file listing all necessary dependencies.
    • Included an MIT License file.

Hi,

I wanted to contribute this valuable collection with my own repo. This repo is built with Gradio, empowers users to effortlessly upload various document types, extract their raw text content, and then apply a diverse set of LangChain text splitting (chunking) methods.

Hope you find it useful.
Copy link
Contributor

coderabbitai bot commented Jun 23, 2025

Walkthrough

New files have been added to the langchain-text-chunker project, including a Gradio-based application (app.py), a README with documentation, a requirements file specifying dependencies, and an MIT license. The application enables users to upload documents, extract text, and apply various LangChain chunking strategies with customizable parameters.

Changes

File(s) Change Summary
langchain-text-chunker/LICENSE Added MIT License text attributing copyright to Tolga Kurtulus (2025).
langchain-text-chunker/README.md Added comprehensive project documentation, usage instructions, and interface screenshots.
langchain-text-chunker/app.py Added Gradio app for document upload, text extraction, and multiple LangChain chunking methods.
langchain-text-chunker/requirements.txt Added dependency list for required Python packages and versions.

Sequence Diagram(s)

sequenceDiagram
    participant User
    participant GradioUI
    participant AppLogic
    participant LangChainSplitter

    User->>GradioUI: Upload file & set chunking parameters
    GradioUI->>AppLogic: Pass file and parameters
    AppLogic->>AppLogic: Extract text from file
    AppLogic->>LangChainSplitter: Apply chunking methods (various)
    LangChainSplitter-->>AppLogic: Return chunked text and metadata
    AppLogic->>GradioUI: Return raw text, chunks, and code examples
    GradioUI->>User: Display results in UI tabs
Loading

Poem

In a meadow of code, where the text bunnies hop,
A chunker was born, with Gradio atop.
Upload your docs, let the splitters run free,
Python and Markdown, as easy as can be!
With code and with chunks, your journey’s begun—
Now splitting up text is a hop, skip, and fun!
🐇✨

✨ Finishing Touches
  • 📝 Generate Docstrings

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share
🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Explain this complex logic.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai explain this code block.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read src/utils.ts and explain its main purpose.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Support

Need help? Create a ticket on our support page for assistance with any issues or questions.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (Invoked using PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai generate docstrings to generate docstrings for this PR.
  • @coderabbitai generate sequence diagram to generate a sequence diagram of the changes in this PR.
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai anywhere in the PR title to generate the title automatically.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 3

🧹 Nitpick comments (4)
langchain-text-chunker/requirements.txt (1)

1-7: Consider pinning all dependency versions for better reproducibility.

While only gradio is version-pinned, unpinned dependencies can lead to compatibility issues and make builds non-reproducible across different environments.

Consider pinning major versions for all dependencies:

 gradio==5.33.2
-langchain
-langchain_community
-pypdf
-python-docx
-nbformat
-unstructured
+langchain>=0.1.0,<1.0.0
+langchain_community>=0.0.1,<1.0.0
+pypdf>=3.0.0,<4.0.0
+python-docx>=0.8.11,<2.0.0
+nbformat>=5.7.0,<6.0.0
+unstructured>=0.10.0,<1.0.0
langchain-text-chunker/app.py (1)

123-126: Apply suggested code simplification.

Static analysis correctly identified this can be simplified with a ternary operator.

-    if isinstance(separator, list):
-        separator_str = "".join(separator)
-    else:
-        separator_str = separator
+    separator_str = "".join(separator) if isinstance(separator, list) else separator
langchain-text-chunker/README.md (2)

13-34: Fix markdown list indentation for consistency.

The nested list items have inconsistent indentation which affects readability and markdown parsing.

 *   **Multi-Document Type Support**: Seamlessly process text from a wide range of document formats, including:
-    *   PDF (`.pdf`)
-    *   Microsoft Word (`.docx`)
-    *   Plain Text (`.txt`)
-    *   HTML (`.html`)
-    *   CSS (`.css`)
-    *   Python Code (`.py`)
-    *   Jupyter Notebooks (`.ipynb`)
-    *   CSV (`.csv`)
+  *   PDF (`.pdf`)
+  *   Microsoft Word (`.docx`)
+  *   Plain Text (`.txt`)
+  *   HTML (`.html`)
+  *   CSS (`.css`)
+  *   Python Code (`.py`)
+  *   Jupyter Notebooks (`.ipynb`)
+  *   CSV (`.csv`)
 *   **Diverse Chunking Strategies**: Explore and compare the output of various LangChain text splitters:
-    *   **Recursive Character Text Splitter**: Ideal for general-purpose text, attempting to split on a list of characters in order.
-    *   **Character Text Splitter**: Splits text based on a single, user-defined separator.
-    *   **Markdown Text Splitter**: Specifically designed to understand and preserve the structure of Markdown documents.
-    *   **Python Code Text Splitter**: Optimized for splitting Python source code while maintaining syntactical integrity.
-    *   **JavaScript Code Text Splitter**: Utilizes language-specific rules to chunk JavaScript code effectively.
+  *   **Recursive Character Text Splitter**: Ideal for general-purpose text, attempting to split on a list of characters in order.
+  *   **Character Text Splitter**: Splits text based on a single, user-defined separator.
+  *   **Markdown Text Splitter**: Specifically designed to understand and preserve the structure of Markdown documents.
+  *   **Python Code Text Splitter**: Optimized for splitting Python source code while maintaining syntactical integrity.
+  *   **JavaScript Code Text Splitter**: Utilizes language-specific rules to chunk JavaScript code effectively.

101-101: Fix typo in screenshot description.

-*Chunking results of Recursice Chunking Method.*
+*Chunking results of Recursive Chunking Method.*
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 3124465 and 7e3b810.

⛔ Files ignored due to path filters (2)
  • langchain-text-chunker/assets/1.JPG is excluded by !**/*.jpg
  • langchain-text-chunker/assets/2.JPG is excluded by !**/*.jpg
📒 Files selected for processing (4)
  • langchain-text-chunker/LICENSE (1 hunks)
  • langchain-text-chunker/README.md (1 hunks)
  • langchain-text-chunker/app.py (1 hunks)
  • langchain-text-chunker/requirements.txt (1 hunks)
🧰 Additional context used
🪛 LanguageTool
langchain-text-chunker/README.md

[uncategorized] ~30-~30: Loose punctuation mark.
Context: ...nerated chunks.
* Chunk Overlap: Specify the number of characters that o...

(UNLIKELY_OPENING_PUNCTUATION)


[uncategorized] ~31-~31: Loose punctuation mark.
Context: ...
* Character Splitter Separator: Choose custom separators for the Charac...

(UNLIKELY_OPENING_PUNCTUATION)


[uncategorized] ~32-~32: Loose punctuation mark.
Context: ...unking method.
* Keep Separator: Control whether the separator is includ...

(UNLIKELY_OPENING_PUNCTUATION)


[uncategorized] ~33-~33: Loose punctuation mark.
Context: ....
* Add Start Index to Metadata: Option to include the starting characte...

(UNLIKELY_OPENING_PUNCTUATION)


[uncategorized] ~34-~34: Loose punctuation mark.
Context: ...ts metadata.
* Strip Whitespace: Automatically remove leading/trailing w...

(UNLIKELY_OPENING_PUNCTUATION)


[style] ~37-~37: Consider a different adjective to strengthen your wording.
Context: ...o experiment with text chunking without deep programming knowledge.

Installati...

(DEEP_PROFOUND)

🪛 markdownlint-cli2 (0.17.2)
langchain-text-chunker/README.md

14-14: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


15-15: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


16-16: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


17-17: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


18-18: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


19-19: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


20-20: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


21-21: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


23-23: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


24-24: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


25-25: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


26-26: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


27-27: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


29-29: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


30-30: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


31-31: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


32-32: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


33-33: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)


34-34: Unordered list indentation
Expected: 2; Actual: 4

(MD007, ul-indent)

🪛 Ruff (0.11.9)
langchain-text-chunker/app.py

123-126: Use ternary operator separator_str = "".join(separator) if isinstance(separator, list) else separator instead of if-else-block

Replace if-else-block with separator_str = "".join(separator) if isinstance(separator, list) else separator

(SIM108)

🪛 Pylint (3.3.7)
langchain-text-chunker/app.py

[refactor] 12-12: Too many local variables (16/15)

(R0914)


[refactor] 12-12: Too many branches (15/12)

(R0912)


[refactor] 12-12: Too many statements (56/50)

(R0915)


[refactor] 82-82: Too many arguments (6/5)

(R0913)


[refactor] 82-82: Too many positional arguments (6/5)

(R0917)


[refactor] 119-119: Too many arguments (7/5)

(R0913)


[refactor] 119-119: Too many positional arguments (7/5)

(R0917)


[refactor] 164-164: Too many arguments (6/5)

(R0913)


[refactor] 164-164: Too many positional arguments (6/5)

(R0917)


[refactor] 199-199: Too many arguments (6/5)

(R0913)


[refactor] 199-199: Too many positional arguments (6/5)

(R0917)


[refactor] 236-236: Too many arguments (6/5)

(R0913)


[refactor] 236-236: Too many positional arguments (6/5)

(R0917)


[refactor] 273-273: Too many arguments (7/5)

(R0913)


[refactor] 273-273: Too many positional arguments (7/5)

(R0917)


[refactor] 273-273: Too many local variables (19/15)

(R0914)

🔇 Additional comments (5)
langchain-text-chunker/LICENSE (1)

1-21: Standard MIT License properly formatted.

The license file is correctly structured with appropriate copyright attribution.

langchain-text-chunker/app.py (3)

1-9: Import organization looks good.

The imports are well organized with clear separation between standard libraries, third-party packages, and LangChain modules.


311-416: Well-structured Gradio interface with good UX design.

The interface is thoughtfully designed with:

  • Clear parameter controls in an accordion
  • Tabbed output for different chunking methods
  • Helpful tooltips and descriptions
  • Copy functionality for extracted text

3-3: Consider security implications of PyPDF2.

PyPDF2 has known security vulnerabilities and is no longer actively maintained. Consider migrating to a more secure alternative.

What are the current security status and recommended alternatives to PyPDF2?
langchain-text-chunker/README.md (1)

1-118: Comprehensive and well-structured documentation.

The README provides excellent coverage of features, installation, usage, and contribution guidelines. The documentation is clear and user-friendly.

Comment on lines +82 to +117
def chunk_recursive(text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace):
if not text:
return [], ""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
keep_separator=keep_separator,
add_start_index=add_start_index,
strip_whitespace=strip_whitespace,
)
chunks = text_splitter.create_documents([text])
formatted_chunks = []
for chunk in chunks:
if isinstance(chunk, Document):
formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
else:
formatted_chunks.append({"content": str(chunk), "metadata": {}})

code_example = f"""
from langchain.text_splitter import RecursiveCharacterTextSplitter

text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example

text_splitter = RecursiveCharacterTextSplitter(
chunk_size={chunk_size},
chunk_overlap={chunk_overlap},
length_function=len,
keep_separator={keep_separator},
add_start_index={add_start_index},
strip_whitespace={strip_whitespace},
)
chunks = text_splitter.create_documents([text_content])
# Access chunks: chunks[0].page_content, chunks[0].metadata
"""
return formatted_chunks, code_example
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Reduce function complexity by extracting common code patterns.

The chunking functions share significant code duplication in formatting chunks and generating code examples.

Extract common functionality:

+def format_chunks_and_code(chunks, text, splitter_class, splitter_params):
+    """Common function to format chunks and generate code examples."""
+    formatted_chunks = []
+    for chunk in chunks:
+        if isinstance(chunk, Document):
+            formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
+        else:
+            formatted_chunks.append({"content": str(chunk), "metadata": {}})
+    
+    # Generate code example
+    params_str = ",\n    ".join([f"{k}={v}" for k, v in splitter_params.items()])
+    code_example = f"""
+from langchain.text_splitter import {splitter_class}
+
+text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example
+
+text_splitter = {splitter_class}(
+    {params_str}
+)
+chunks = text_splitter.create_documents([text_content])
+# Access chunks: chunks[0].page_content, chunks[0].metadata
+"""
+    return formatted_chunks, code_example
+
 def chunk_recursive(text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace):
     if not text:
         return [], ""
     text_splitter = RecursiveCharacterTextSplitter(
         chunk_size=chunk_size,
         chunk_overlap=chunk_overlap,
         length_function=len,
         keep_separator=keep_separator,
         add_start_index=add_start_index,
         strip_whitespace=strip_whitespace,
     )
     chunks = text_splitter.create_documents([text])
-    formatted_chunks = []
-    for chunk in chunks:
-        if isinstance(chunk, Document):
-            formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
-        else:
-            formatted_chunks.append({"content": str(chunk), "metadata": {}})
-    
-    code_example = f"""
-from langchain.text_splitter import RecursiveCharacterTextSplitter
-
-text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example
-
-text_splitter = RecursiveCharacterTextSplitter(
-    chunk_size={chunk_size},
-    chunk_overlap={chunk_overlap},
-    length_function=len,
-    keep_separator={keep_separator},
-    add_start_index={add_start_index},
-    strip_whitespace={strip_whitespace},
-)
-chunks = text_splitter.create_documents([text_content])
-# Access chunks: chunks[0].page_content, chunks[0].metadata
-"""
-    return formatted_chunks, code_example
+    
+    params = {
+        "chunk_size": chunk_size,
+        "chunk_overlap": chunk_overlap,
+        "length_function": "len",
+        "keep_separator": keep_separator,
+        "add_start_index": add_start_index,
+        "strip_whitespace": strip_whitespace
+    }
+    return format_chunks_and_code(chunks, text, "RecursiveCharacterTextSplitter", params)
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def chunk_recursive(text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace):
if not text:
return [], ""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
keep_separator=keep_separator,
add_start_index=add_start_index,
strip_whitespace=strip_whitespace,
)
chunks = text_splitter.create_documents([text])
formatted_chunks = []
for chunk in chunks:
if isinstance(chunk, Document):
formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
else:
formatted_chunks.append({"content": str(chunk), "metadata": {}})
code_example = f"""
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example
text_splitter = RecursiveCharacterTextSplitter(
chunk_size={chunk_size},
chunk_overlap={chunk_overlap},
length_function=len,
keep_separator={keep_separator},
add_start_index={add_start_index},
strip_whitespace={strip_whitespace},
)
chunks = text_splitter.create_documents([text_content])
# Access chunks: chunks[0].page_content, chunks[0].metadata
"""
return formatted_chunks, code_example
def format_chunks_and_code(chunks, text, splitter_class, splitter_params):
"""Common function to format chunks and generate code examples."""
formatted_chunks = []
for chunk in chunks:
if isinstance(chunk, Document):
formatted_chunks.append({"content": chunk.page_content, "metadata": chunk.metadata})
else:
formatted_chunks.append({"content": str(chunk), "metadata": {}})
# Generate code example
params_str = ",\n ".join([f"{k}={v}" for k, v in splitter_params.items()])
code_example = f"""
from langchain.text_splitter import {splitter_class}
text_content = \"\"\"{text[:50]}...\"\"\" # Truncated for example
text_splitter = {splitter_class}(
{params_str}
)
chunks = text_splitter.create_documents([text_content])
# Access chunks: chunks[0].page_content, chunks[0].metadata
"""
return formatted_chunks, code_example
def chunk_recursive(text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace):
if not text:
return [], ""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
keep_separator=keep_separator,
add_start_index=add_start_index,
strip_whitespace=strip_whitespace,
)
chunks = text_splitter.create_documents([text])
params = {
"chunk_size": chunk_size,
"chunk_overlap": chunk_overlap,
"length_function": "len",
"keep_separator": keep_separator,
"add_start_index": add_start_index,
"strip_whitespace": strip_whitespace
}
return format_chunks_and_code(chunks, text, "RecursiveCharacterTextSplitter", params)
🧰 Tools
🪛 Pylint (3.3.7)

[refactor] 82-82: Too many arguments (6/5)

(R0913)


[refactor] 82-82: Too many positional arguments (6/5)

(R0917)

🤖 Prompt for AI Agents
In langchain-text-chunker/app.py between lines 82 and 117, the chunk_recursive
function duplicates code for formatting chunks and generating code examples. To
fix this, extract the repeated logic for formatting chunk objects into a
separate helper function that takes chunks and returns formatted_chunks.
Similarly, create a utility function to generate the code example string based
on input parameters. Then, update chunk_recursive to call these helper
functions, reducing code duplication and improving maintainability.

Comment on lines +273 to +307
def main_interface(uploaded_file, chunk_size, chunk_overlap, separator, keep_separator, add_start_index, strip_whitespace):
if uploaded_file is None:
return "", "", [], [], [], [], [], "", "", "", "", "", "", "", "", "", "", ""

# Ensure chunk_size and chunk_overlap are integers
chunk_size = int(chunk_size)
chunk_overlap = int(chunk_overlap)

raw_text, display_content = process_uploaded_file(uploaded_file)

recursive_chunks, recursive_code = chunk_recursive(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
character_chunks, character_code = chunk_character(raw_text, chunk_size, chunk_overlap, separator, keep_separator, add_start_index, strip_whitespace)
markdown_chunks, markdown_code = chunk_markdown(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
python_chunks, python_code = chunk_python_code(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
javascript_chunks, javascript_code = chunk_javascript_code(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)

return (
display_content,
raw_text,
recursive_chunks,
character_chunks,
markdown_chunks,
python_chunks,
javascript_chunks,
f"Number of chunks: {len(recursive_chunks)}",
f"Number of chunks: {len(character_chunks)}",
f"Number of chunks: {len(markdown_chunks)}",
f"Number of chunks: {len(python_chunks)}",
f"Number of chunks: {len(javascript_chunks)}",
recursive_code,
character_code,
markdown_code,
python_code,
javascript_code
)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Simplify the main interface function return statement.

The function returns 18 values which makes it hard to maintain and understand. Consider using a data structure.

+from dataclasses import dataclass
+from typing import List, Dict, Any
+
+@dataclass
+class ChunkingResult:
+    display_content: str
+    raw_text: str
+    recursive_chunks: List[Dict[str, Any]]
+    character_chunks: List[Dict[str, Any]]
+    markdown_chunks: List[Dict[str, Any]]
+    python_chunks: List[Dict[str, Any]]
+    javascript_chunks: List[Dict[str, Any]]
+    recursive_count: str
+    character_count: str
+    markdown_count: str
+    python_count: str
+    javascript_count: str
+    recursive_code: str
+    character_code: str
+    markdown_code: str
+    python_code: str
+    javascript_code: str

 def main_interface(uploaded_file, chunk_size, chunk_overlap, separator, keep_separator, add_start_index, strip_whitespace):
     if uploaded_file is None:
-        return "", "", [], [], [], [], [], "", "", "", "", "", "", "", "", "", "", ""
+        return ChunkingResult("", "", [], [], [], [], [], "", "", "", "", "", "", "", "", "", "", "")
     
     # ... existing processing code ...
     
-    return (
-        display_content,
-        raw_text,
-        recursive_chunks,
-        character_chunks,
-        markdown_chunks,
-        python_chunks,
-        javascript_chunks,
-        f"Number of chunks: {len(recursive_chunks)}",
-        f"Number of chunks: {len(character_chunks)}",
-        f"Number of chunks: {len(markdown_chunks)}",
-        f"Number of chunks: {len(python_chunks)}",
-        f"Number of chunks: {len(javascript_chunks)}",
-        recursive_code,
-        character_code,
-        markdown_code,
-        python_code,
-        javascript_code
-    )
+    return ChunkingResult(
+        display_content=display_content,
+        raw_text=raw_text,
+        recursive_chunks=recursive_chunks,
+        character_chunks=character_chunks,
+        markdown_chunks=markdown_chunks,
+        python_chunks=python_chunks,
+        javascript_chunks=javascript_chunks,
+        recursive_count=f"Number of chunks: {len(recursive_chunks)}",
+        character_count=f"Number of chunks: {len(character_chunks)}",
+        markdown_count=f"Number of chunks: {len(markdown_chunks)}",
+        python_count=f"Number of chunks: {len(python_chunks)}",
+        javascript_count=f"Number of chunks: {len(javascript_chunks)}",
+        recursive_code=recursive_code,
+        character_code=character_code,
+        markdown_code=markdown_code,
+        python_code=python_code,
+        javascript_code=javascript_code
+    )
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def main_interface(uploaded_file, chunk_size, chunk_overlap, separator, keep_separator, add_start_index, strip_whitespace):
if uploaded_file is None:
return "", "", [], [], [], [], [], "", "", "", "", "", "", "", "", "", "", ""
# Ensure chunk_size and chunk_overlap are integers
chunk_size = int(chunk_size)
chunk_overlap = int(chunk_overlap)
raw_text, display_content = process_uploaded_file(uploaded_file)
recursive_chunks, recursive_code = chunk_recursive(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
character_chunks, character_code = chunk_character(raw_text, chunk_size, chunk_overlap, separator, keep_separator, add_start_index, strip_whitespace)
markdown_chunks, markdown_code = chunk_markdown(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
python_chunks, python_code = chunk_python_code(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
javascript_chunks, javascript_code = chunk_javascript_code(raw_text, chunk_size, chunk_overlap, keep_separator, add_start_index, strip_whitespace)
return (
display_content,
raw_text,
recursive_chunks,
character_chunks,
markdown_chunks,
python_chunks,
javascript_chunks,
f"Number of chunks: {len(recursive_chunks)}",
f"Number of chunks: {len(character_chunks)}",
f"Number of chunks: {len(markdown_chunks)}",
f"Number of chunks: {len(python_chunks)}",
f"Number of chunks: {len(javascript_chunks)}",
recursive_code,
character_code,
markdown_code,
python_code,
javascript_code
)
from dataclasses import dataclass
from typing import List, Dict, Any
@dataclass
class ChunkingResult:
display_content: str
raw_text: str
recursive_chunks: List[Dict[str, Any]]
character_chunks: List[Dict[str, Any]]
markdown_chunks: List[Dict[str, Any]]
python_chunks: List[Dict[str, Any]]
javascript_chunks: List[Dict[str, Any]]
recursive_count: str
character_count: str
markdown_count: str
python_count: str
javascript_count: str
recursive_code: str
character_code: str
markdown_code: str
python_code: str
javascript_code: str
def main_interface(uploaded_file, chunk_size, chunk_overlap, separator, keep_separator, add_start_index, strip_whitespace):
if uploaded_file is None:
return ChunkingResult(
"", "", [], [], [], [], [],
"", "", "", "", "",
"", "", "", "", ""
)
# Ensure chunk_size and chunk_overlap are integers
chunk_size = int(chunk_size)
chunk_overlap = int(chunk_overlap)
raw_text, display_content = process_uploaded_file(uploaded_file)
recursive_chunks, recursive_code = chunk_recursive(
raw_text, chunk_size, chunk_overlap,
keep_separator, add_start_index, strip_whitespace
)
character_chunks, character_code = chunk_character(
raw_text, chunk_size, chunk_overlap, separator,
keep_separator, add_start_index, strip_whitespace
)
markdown_chunks, markdown_code = chunk_markdown(
raw_text, chunk_size, chunk_overlap,
keep_separator, add_start_index, strip_whitespace
)
python_chunks, python_code = chunk_python_code(
raw_text, chunk_size, chunk_overlap,
keep_separator, add_start_index, strip_whitespace
)
javascript_chunks, javascript_code = chunk_javascript_code(
raw_text, chunk_size, chunk_overlap,
keep_separator, add_start_index, strip_whitespace
)
return ChunkingResult(
display_content=display_content,
raw_text=raw_text,
recursive_chunks=recursive_chunks,
character_chunks=character_chunks,
markdown_chunks=markdown_chunks,
python_chunks=python_chunks,
javascript_chunks=javascript_chunks,
recursive_count=f"Number of chunks: {len(recursive_chunks)}",
character_count=f"Number of chunks: {len(character_chunks)}",
markdown_count=f"Number of chunks: {len(markdown_chunks)}",
python_count=f"Number of chunks: {len(python_chunks)}",
javascript_count=f"Number of chunks: {len(javascript_chunks)}",
recursive_code=recursive_code,
character_code=character_code,
markdown_code=markdown_code,
python_code=python_code,
javascript_code=javascript_code
)
🧰 Tools
🪛 Pylint (3.3.7)

[refactor] 273-273: Too many arguments (7/5)

(R0913)


[refactor] 273-273: Too many positional arguments (7/5)

(R0917)


[refactor] 273-273: Too many local variables (19/15)

(R0914)

🤖 Prompt for AI Agents
In langchain-text-chunker/app.py around lines 273 to 307, the main_interface
function returns 18 separate values, making it difficult to maintain and
understand. Refactor the return statement to return a single dictionary or a
custom data class containing all these values as named fields. This will
simplify the interface and improve code readability and maintainability.

Comment on lines +12 to +79
def process_uploaded_file(uploaded_file):
text = ""
display_content = ""
file_extension = uploaded_file.name.split(".")[-1]

if file_extension == "pdf":
try:
# Gradio's uploaded_file.name provides the path to the temporary file
pdf = PdfReader(uploaded_file.name)
for page in pdf.pages:
page_text = page.extract_text()
text += page_text + "\n"
display_content += page_text + "\n"
except Exception as e:
display_content = f"Error reading PDF file: {e}"
text = ""

elif file_extension == "docx":
try:
docx_loader = Docx2txtLoader(uploaded_file.name)
documents = docx_loader.load()
text = "\n".join([doc.page_content for doc in documents])
display_content = text
except Exception as e:
display_content = f"Error reading DOCX file: {e}"
text = ""

elif file_extension in ["html", "css", "py", "txt"]:
try:
with open(uploaded_file.name, "r", encoding="utf-8") as f:
file_content = f.read()
display_content = file_content # Display as plain text in Textbox
text = file_content
except Exception as e:
display_content = f"Error reading {file_extension.upper()} file: {e}"
text = ""

elif file_extension == "ipynb":
try:
# nbformat.read can take a file path
nb_content = nbformat.read(uploaded_file.name, as_version=4)
nb_filtered = [cell for cell in nb_content["cells"] if cell["cell_type"] in ["code", "markdown"]]

for cell in nb_filtered:
if cell["cell_type"] == "code":
display_content += f"```python\n{cell['source']}\n```\n"
text += cell["source"] + "\n"
elif cell["cell_type"] == "markdown":
display_content += f"{cell['source']}\n"
text += cell["source"] + "\n"
except Exception as e:
display_content = f"Error reading IPYNB file: {e}"
text = ""

elif file_extension == "csv":
try:
loader = CSVLoader(file_path=uploaded_file.name, encoding="utf-8", csv_args={'delimiter': ','})
documents = loader.load()
text = "\n".join([doc.page_content for doc in documents])
display_content = text # For CSV, display the concatenated text
except Exception as e:
display_content = f"Error reading CSV file: {e}"
text = ""
else:
display_content = "Unsupported file type."
text = ""

return text, display_content
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

⚠️ Potential issue

Improve error handling and security in file processing function.

The function handles multiple file types but has several areas for improvement:

  1. Security Risk: The function directly opens files without validation, which could be exploited with malicious file paths.
  2. Error Handling: Generic exception handling masks specific error types.
  3. Code Complexity: The function is too long and handles too many responsibilities.

Apply these security and structure improvements:

 def process_uploaded_file(uploaded_file):
+    """Process uploaded file and extract text content safely."""
+    if not uploaded_file or not hasattr(uploaded_file, 'name'):
+        return "", "No file provided"
+    
     text = ""
     display_content = ""
-    file_extension = uploaded_file.name.split(".")[-1]
+    file_extension = uploaded_file.name.split(".")[-1].lower()
+    
+    # Validate file extension
+    allowed_extensions = {"pdf", "docx", "html", "css", "py", "txt", "ipynb", "csv"}
+    if file_extension not in allowed_extensions:
+        return "", f"Unsupported file type: {file_extension}"

     if file_extension == "pdf":
         try:
-            # Gradio's uploaded_file.name provides the path to the temporary file
-            pdf = PdfReader(uploaded_file.name)
+            pdf = PdfReader(uploaded_file.name)
             for page in pdf.pages:
                 page_text = page.extract_text()
                 text += page_text + "\n"
                 display_content += page_text + "\n"
-        except Exception as e:
+        except (FileNotFoundError, PermissionError) as e:
+            display_content = f"File access error: {e}"
+            text = ""
+        except Exception as e:
             display_content = f"Error reading PDF file: {e}"
             text = ""

Consider splitting this function into smaller, specialized functions for each file type.

📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def process_uploaded_file(uploaded_file):
text = ""
display_content = ""
file_extension = uploaded_file.name.split(".")[-1]
if file_extension == "pdf":
try:
# Gradio's uploaded_file.name provides the path to the temporary file
pdf = PdfReader(uploaded_file.name)
for page in pdf.pages:
page_text = page.extract_text()
text += page_text + "\n"
display_content += page_text + "\n"
except Exception as e:
display_content = f"Error reading PDF file: {e}"
text = ""
elif file_extension == "docx":
try:
docx_loader = Docx2txtLoader(uploaded_file.name)
documents = docx_loader.load()
text = "\n".join([doc.page_content for doc in documents])
display_content = text
except Exception as e:
display_content = f"Error reading DOCX file: {e}"
text = ""
elif file_extension in ["html", "css", "py", "txt"]:
try:
with open(uploaded_file.name, "r", encoding="utf-8") as f:
file_content = f.read()
display_content = file_content # Display as plain text in Textbox
text = file_content
except Exception as e:
display_content = f"Error reading {file_extension.upper()} file: {e}"
text = ""
elif file_extension == "ipynb":
try:
# nbformat.read can take a file path
nb_content = nbformat.read(uploaded_file.name, as_version=4)
nb_filtered = [cell for cell in nb_content["cells"] if cell["cell_type"] in ["code", "markdown"]]
for cell in nb_filtered:
if cell["cell_type"] == "code":
display_content += f"```python\n{cell['source']}\n```\n"
text += cell["source"] + "\n"
elif cell["cell_type"] == "markdown":
display_content += f"{cell['source']}\n"
text += cell["source"] + "\n"
except Exception as e:
display_content = f"Error reading IPYNB file: {e}"
text = ""
elif file_extension == "csv":
try:
loader = CSVLoader(file_path=uploaded_file.name, encoding="utf-8", csv_args={'delimiter': ','})
documents = loader.load()
text = "\n".join([doc.page_content for doc in documents])
display_content = text # For CSV, display the concatenated text
except Exception as e:
display_content = f"Error reading CSV file: {e}"
text = ""
else:
display_content = "Unsupported file type."
text = ""
return text, display_content
def process_uploaded_file(uploaded_file):
"""Process uploaded file and extract text content safely."""
if not uploaded_file or not hasattr(uploaded_file, "name"):
return "", "No file provided"
text = ""
display_content = ""
file_extension = uploaded_file.name.split(".")[-1].lower()
# Validate file extension
allowed_extensions = {"pdf", "docx", "html", "css", "py", "txt", "ipynb", "csv"}
if file_extension not in allowed_extensions:
return "", f"Unsupported file type: {file_extension}"
if file_extension == "pdf":
try:
pdf = PdfReader(uploaded_file.name)
for page in pdf.pages:
page_text = page.extract_text()
text += page_text + "\n"
display_content += page_text + "\n"
except (FileNotFoundError, PermissionError) as e:
display_content = f"File access error: {e}"
text = ""
except Exception as e:
display_content = f"Error reading PDF file: {e}"
text = ""
elif file_extension == "docx":
try:
docx_loader = Docx2txtLoader(uploaded_file.name)
documents = docx_loader.load()
text = "\n".join([doc.page_content for doc in documents])
display_content = text
except Exception as e:
display_content = f"Error reading DOCX file: {e}"
text = ""
elif file_extension in ["html", "css", "py", "txt"]:
try:
with open(uploaded_file.name, "r", encoding="utf-8") as f:
file_content = f.read()
display_content = file_content # Display as plain text in Textbox
text = file_content
except Exception as e:
display_content = f"Error reading {file_extension.upper()} file: {e}"
text = ""
elif file_extension == "ipynb":
try:
# nbformat.read can take a file path
nb_content = nbformat.read(uploaded_file.name, as_version=4)
nb_filtered = [
cell for cell in nb_content["cells"]
if cell["cell_type"] in ["code", "markdown"]
]
for cell in nb_filtered:
if cell["cell_type"] == "code":
display_content += f"
🧰 Tools
🪛 Pylint (3.3.7)

[refactor] 12-12: Too many local variables (16/15)

(R0914)


[refactor] 12-12: Too many branches (15/12)

(R0912)


[refactor] 12-12: Too many statements (56/50)

(R0915)

🤖 Prompt for AI Agents
In langchain-text-chunker/app.py from lines 12 to 79, the process_uploaded_file
function is too long, mixes responsibilities, and uses generic exception
handling with potential security risks from unvalidated file paths. Refactor by
splitting the function into smaller, specialized functions for each file type
(e.g., process_pdf_file, process_docx_file, etc.). Add validation to ensure
uploaded_file.name is safe and sanitized before opening. Replace generic except
blocks with specific exception types to improve error handling clarity.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant