A Julia package for working with special matrix types.
This Julia package extends the LinearAlgebra
library
with support for special matrices that are used in linear algebra.
Every special matrix has its own type
and is stored efficiently.
The full matrix is accessed by the command Matrix(A)
.
julia> ] add SpecialMatrices
ToeplitzMatrices.jl supports Toeplitz, Hankel, and circulant matrices.
Cauchy(x,y)[i,j]=1/(x[i]+y[j])
Cauchy(x)=Cauchy(x,x)
cauchy(k::Number)=Cauchy(collect(1:k))
julia> Cauchy([1,2,3],[3,4,5])
3x3 Cauchy{Int64}:
0.25 0.2 0.166667
0.2 0.166667 0.142857
0.166667 0.142857 0.125
julia> Cauchy([1,2,3])
3x3 Cauchy{Int64}:
0.5 0.333333 0.25
0.333333 0.25 0.2
0.25 0.2 0.166667
julia> Cauchy(pi)
3x3 Cauchy{Float64}:
0.5 0.333333 0.25
0.333333 0.25 0.2
0.25 0.2 0.166667
julia> A=Companion([3,2,1])
3x3 Companion{Int64}:
0 0 -3
1 0 -2
0 1 -1
Also, directly from a polynomial:
julia> using Polynomials
julia> P=Polynomial([2.0,3,4,5])
Polynomial(2 + 3x + 4x^2 + 5x^3)
julia> C=Companion(P)
3×3 Companion{Float64}:
0.0 0.0 -0.4
1.0 0.0 -0.6
0.0 1.0 -0.8
Example
julia> using SpecialMatrices
julia> F=Frobenius(3, [1.0,2.0,3.0]) #Specify subdiagonals of column 3
6x6 Frobenius{Float64}:
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0 0.0 0.0
0.0 0.0 2.0 0.0 1.0 0.0
0.0 0.0 3.0 0.0 0.0 1.0
julia> inv(F) #Special form of inverse
6x6 Frobenius{Float64}:
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 -1.0 1.0 0.0 0.0
0.0 0.0 -2.0 0.0 1.0 0.0
0.0 0.0 -3.0 0.0 0.0 1.0
julia> F*F #Special form preserved if the same column has the subdiagonals
6x6 Frobenius{Float64}:
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 2.0 1.0 0.0 0.0
0.0 0.0 4.0 0.0 1.0 0.0
0.0 0.0 6.0 0.0 0.0 1.0
julia> F*Frobenius(2, [5.0,4.0,3.0,2.0]) #Promotes to Matrix
6x6 Array{Float64,2}:
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 5.0 1.0 0.0 0.0 0.0
0.0 9.0 1.0 1.0 0.0 0.0
0.0 13.0 2.0 0.0 1.0 0.0
0.0 17.0 3.0 0.0 0.0 1.0
julia> F*[10.0,20,30,40,50,60.0]
6-element Array{Float64,1}:
10.0
20.0
30.0
70.0
110.0
150.0
julia> A=Hilbert(5)
Hilbert{Rational{Int64}}(5,5)
julia> Matrix(A)
5x5 Array{Rational{Int64},2}:
1//1 1//2 1//3 1//4 1//5
1//2 1//3 1//4 1//5 1//6
1//3 1//4 1//5 1//6 1//7
1//4 1//5 1//6 1//7 1//8
1//5 1//6 1//7 1//8 1//9
julia> Matrix(Hilbert(5))
5x5 Array{Rational{Int64},2}:
1//1 1//2 1//3 1//4 1//5
1//2 1//3 1//4 1//5 1//6
1//3 1//4 1//5 1//6 1//7
1//4 1//5 1//6 1//7 1//8
1//5 1//6 1//7 1//8 1//9
Inverses are also integer matrices:
julia> inv(A)
5x5 Array{Rational{Int64},2}:
25//1 -300//1 1050//1 -1400//1 630//1
-300//1 4800//1 -18900//1 26880//1 -12600//1
1050//1 -18900//1 79380//1 -117600//1 56700//1
-1400//1 26880//1 -117600//1 179200//1 -88200//1
630//1 -12600//1 56700//1 -88200//1 44100//1
julia> A=Kahan(5,5,1,35)
5x5 Kahan{Int64,Int64}:
1.0 -0.540302 -0.540302 -0.540302 -0.540302
0.0 0.841471 -0.454649 -0.454649 -0.454649
0.0 0.0 0.708073 -0.382574 -0.382574
0.0 0.0 0.0 0.595823 -0.321925
0.0 0.0 0.0 0.0 0.501368
julia> A=Kahan(5,3,0.5,0)
5x3 Kahan{Float64,Int64}:
1.0 -0.877583 -0.877583
0.0 0.479426 -0.420735
0.0 0.0 0.229849
0.0 0.0 0.0
0.0 0.0 0.0
julia> A=Kahan(3,5,0.5,1e-3)
3x5 Kahan{Float64,Float64}:
1.0 -0.877583 -0.877583 -0.877583 -0.877583
0.0 0.479426 -0.420735 -0.420735 -0.420735
0.0 0.0 0.229849 -0.201711 -0.201711
For more details see N. J. Higham (1987).
Riemann matrix is defined as A = B[2:N+1, 2:N+1]
, where
B[i,j] = i-1
if i
divides j
, and -1
otherwise.
Riemann hypothesis holds
if and only if det(A) = O( N! N^(-1/2+epsilon))
for every epsilon > 0
.
julia> Riemann(7)
7x7 Riemann{Int64}:
1 -1 1 -1 1 -1 1
-1 2 -1 -1 2 -1 -1
-1 -1 3 -1 -1 -1 3
-1 -1 -1 4 -1 -1 -1
-1 -1 -1 -1 5 -1 -1
-1 -1 -1 -1 -1 6 -1
-1 -1 -1 -1 -1 -1 7
For more details see F. Roesler (1986).
A special SymTridiagonal
matrix named after Gilbert Strang
julia> Strang(6)
6x6 Strang{Float64}:
2.0 -1.0 0.0 0.0 0.0 0.0
-1.0 2.0 -1.0 0.0 0.0 0.0
0.0 -1.0 2.0 -1.0 0.0 0.0
0.0 0.0 -1.0 2.0 -1.0 0.0
0.0 0.0 0.0 -1.0 2.0 -1.0
0.0 0.0 0.0 0.0 -1.0 2.0
julia> a = 1:5
julia> A = Vandermonde(a)
5×5 Vandermonde{Int64}:
1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625
Adjoint Vandermonde:
julia> A'
5×5 adjoint(::Vandermonde{Int64}) with eltype Int64:
1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125
1 16 81 256 625
The backslash operator \
is overloaded
to solve Vandermonde and adjoint Vandermonde systems in O(n^2)
time
using the algorithm of
Björck & Pereyra (1970):
julia> A \ a
5-element Vector{Float64}:
0.0
1.0
0.0
0.0
0.0
julia> A' \ A[2,:]
5-element Vector{Float64}:
0.0
1.0
0.0
0.0
0.0