pgvector support for Rust
Supports Rust-Postgres, SQLx, and Diesel
Follow the instructions for your database library:
Add this line to your application’s Cargo.toml under [dependencies]:
pgvector = { version = "0.2", features = ["postgres"] }Create a vector from a Vec<f32>
let embedding = pgvector::Vector::from(vec![1.0, 2.0, 3.0]);Insert a vector
client.execute("INSERT INTO items (embedding) VALUES ($1)", &[&embedding])?;Get the nearest neighbor
let row = client.query_one("SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 1", &[&embedding])?;Retrieve a vector
let row = client.query_one("SELECT embedding FROM items LIMIT 1", &[])?;
let embedding: pgvector::Vector = row.get(0);Use Option if the value could be NULL
let embedding: Option<pgvector::Vector> = row.get(0);Add this line to your application’s Cargo.toml under [dependencies]:
pgvector = { version = "0.2", features = ["sqlx"] }Create a vector from a Vec<f32>
let embedding = pgvector::Vector::from(vec![1.0, 2.0, 3.0]);Insert a vector
sqlx::query("INSERT INTO items (embedding) VALUES ($1)").bind(embedding).execute(&pool).await?;Get the nearest neighbors
let rows = sqlx::query("SELECT * FROM items ORDER BY embedding <-> $1 LIMIT 1")
.bind(embedding).fetch_all(&pool).await?;Retrieve a vector
let row = sqlx::query("SELECT embedding FROM items LIMIT 1").fetch_one(&pool).await?;
let embedding: pgvector::Vector = row.try_get("embedding")?;Add this line to your application’s Cargo.toml under [dependencies]:
pgvector = { version = "0.2", features = ["diesel"] }And add this line to your application’s diesel.toml under [print_schema]:
import_types = ["diesel::sql_types::*", "pgvector::sql_types::*"]Create a migration
diesel migration generate create_vector_extensionwith up.sql:
CREATE EXTENSION vectorand down.sql:
DROP EXTENSION vectorRun the migration
diesel migration runYou can now use the vector type in future migrations
CREATE TABLE items (
embedding VECTOR(3)
)For models, use:
pub struct Item {
pub embedding: Option<pgvector::Vector>
}Create a vector from a Vec<f32>
let embedding = pgvector::Vector::from(vec![1.0, 2.0, 3.0]);Insert a vector
let new_item = Item {
embedding: Some(embedding)
};
diesel::insert_into(items::table)
.values(&new_item)
.get_result::<Item>(&mut conn)?;Get the nearest neighbors
use pgvector::VectorExpressionMethods;
let neighbors = items::table
.order(items::embedding.l2_distance(embedding))
.limit(5)
.load::<Item>(&mut conn)?;Also supports max_inner_product and cosine_distance
Get the distances
let distances = items::table
.select(items::embedding.l2_distance(embedding))
.load::<Option<f64>>(&mut conn)?;Add an approximate index in a migration
CREATE INDEX my_index ON items USING ivfflat (embedding vector_l2_ops) WITH (lists = 100)Use vector_ip_ops for inner product and vector_cosine_ops for cosine distance
Convert a vector to a Vec<f32>
let f32_vec: Vec<f32> = vec.into();View the changelog
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- Report bugs
- Fix bugs and submit pull requests
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
git clone https://github.com/pgvector/pgvector-rust.git
cd pgvector-rust
createdb pgvector_rust_test
cargo test --all-features