Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] Add spectral mismatch model comparison table #2353

Draft
wants to merge 13 commits into
base: main
Choose a base branch
from
7 changes: 4 additions & 3 deletions docs/sphinx/source/user_guide/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,18 +9,19 @@ This user guide is an overview and explains some of the key features of pvlib.
.. toctree::
:caption: Getting started
:maxdepth: 2

package_overview
installation
introtutorial

.. toctree::
:caption: Modeling topics
:maxdepth: 2

pvsystem
modelchain
timetimezones
spectrum
bifacial
clearsky
weather_data
Expand Down
46 changes: 46 additions & 0 deletions docs/sphinx/source/user_guide/spectrum.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
.. _spectrum_user_guide:

Spectrum
========

intro

Spectral mismatch models
------------------------

pvlib-python contains several models to estimate the spectral mismatch factor
using atmospheric variables such as air mass, or system and meteorological
data such as spectral response and spectral irradiance. An example
demonstrating the application of three pvlib-python spectral mismatch models
is also available: :ref:`sphx_glr_gallery_spectrum_spectral_factor.py`. Here,
a comparison of all models available in pvlib-python is presented. An extended
review of a wider range of models available in the published literature may be
found in Reference [X].

The table below summarises the models currently available in pvlib, the inputs
required, cell technologies for which model coefficients have been published,
source of data used for model development and validation, and references.

+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
| Model | Inputs | Cell technology | Reference |
+=========================================================+==============================================================+=================+============+
| :py:func:`~pvlib.spectrum.spectral_factor_caballero` | absolute airmass, precipitable water, aerosol optical depth | CdTe, mono-Si, | |
| | | poly-Si, CIGS, | [X] |
| | | aSi, perovskite | |
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
| :py:func:`~pvlib.spectrum.spectral_factor_firstsolar` | absolute airmass, precipitable water | mSi, CdTe | [X] |
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
| :py:func:`~pvlib.spectrum.spectral_factor_sapm` | absolute airmass | Multiple | [X] |
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
| :py:func:`~pvlib.spectrum.spectral_factor_pvspec` | absolute airmass, clearsky index | CdTe, mono-Si, | |
| | | poly-Si, CIGS, | [X] |
| | | aSi | |
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
| :py:func:`~pvlib.spectrum.spectral_factor_jrc` | absolute airmass, clearsky index | CdTe, poly-Si | [X] |
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+
| :py:func:`~pvlib.spectrum.calc_spectral_mismatch_field` | spectral response, spectral irradiance | - | [X] |
+---------------------------------------------------------+--------------------------------------------------------------+-----------------+------------+


References
----------