-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Randall Smith
committed
Jun 7, 2017
1 parent
464a5d2
commit 8919f48
Showing
6 changed files
with
279 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
from keras.layers.core import Layer, InputSpec | ||
from keras import constraints, regularizers, initializations, activations | ||
import keras.backend as K | ||
import theano.tensor as T | ||
|
||
|
||
class EltWiseProduct(Layer): | ||
def __init__(self, downsampling_factor=10, init='glorot_uniform', activation='linear', | ||
weights=None, W_regularizer=None, activity_regularizer=None, | ||
W_constraint=None, input_dim=None, **kwargs): | ||
|
||
self.downsampling_factor = downsampling_factor | ||
self.init = initializations.get(init) | ||
self.activation = activations.get(activation) | ||
|
||
self.W_regularizer = regularizers.get(W_regularizer) | ||
self.activity_regularizer = regularizers.get(activity_regularizer) | ||
|
||
self.W_constraint = constraints.get(W_constraint) | ||
|
||
self.initial_weights = weights | ||
|
||
self.input_dim = input_dim | ||
if self.input_dim: | ||
kwargs['input_shape'] = (self.input_dim,) | ||
|
||
self.input_spec = [InputSpec(ndim=4)] | ||
super(EltWiseProduct, self).__init__(**kwargs) | ||
|
||
def build(self, input_shape): | ||
self.W = self.init([s // self.downsampling_factor for s in input_shape[2:]]) | ||
|
||
self.trainable_weights = [self.W] | ||
|
||
self.regularizers = [] | ||
if self.W_regularizer: | ||
self.W_regularizer.set_param(self.W) | ||
self.regularizers.append(self.W_regularizer) | ||
|
||
if self.activity_regularizer: | ||
self.activity_regularizer.set_layer(self) | ||
self.regularizers.append(self.activity_regularizer) | ||
|
||
if self.initial_weights is not None: | ||
self.set_weights(self.initial_weights) | ||
del self.initial_weights | ||
|
||
self.constraints = {} | ||
if self.W_constraint: | ||
self.constraints[self.W] = self.W_constraint | ||
|
||
def get_output_shape_for(self, input_shape): | ||
return input_shape | ||
|
||
def call(self, x, mask=None): | ||
output = x*T.nnet.abstract_conv.bilinear_upsampling(K.expand_dims(K.expand_dims(1 + self.W, 0), 0), self.downsampling_factor, 1, 1) | ||
return output | ||
|
||
def get_config(self): | ||
config = {'name': self.__class__.__name__, | ||
'output_dim': self.input_dim, | ||
'init': self.init.__name__, | ||
'activation': self.activation.__name__, | ||
'W_regularizer': self.W_regularizer.get_config() if self.W_regularizer else None, | ||
'activity_regularizer': self.activity_regularizer.get_config() if self.activity_regularizer else None, | ||
'W_constraint': self.W_constraint.get_config() if self.W_constraint else None, | ||
'input_dim': self.input_dim, | ||
'downsampling_factor': self.downsampling_factor} | ||
base_config = super(EltWiseProduct, self).get_config() | ||
return dict(list(base_config.items()) + list(config.items())) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
from __future__ import division | ||
from keras.models import Model | ||
from keras.layers.core import Dropout, Activation | ||
from keras.layers import Input, merge | ||
from keras.layers.convolutional import Convolution2D, MaxPooling2D | ||
from keras.regularizers import l2 | ||
import keras.backend as K | ||
import h5py | ||
import math | ||
from eltwise_product import EltWiseProduct | ||
|
||
######################################################################### | ||
# MODEL PARAMETERS # | ||
######################################################################### | ||
# batch size | ||
b_s = 10 | ||
# number of rows of input images | ||
shape_r = 480 | ||
# number of cols of input images | ||
shape_c = 640 | ||
# number of rows of predicted maps | ||
shape_r_gt = int(math.ceil(shape_r / 8)) | ||
# number of cols of predicted maps | ||
shape_c_gt = int(math.ceil(shape_c / 8)) | ||
# number of epochs | ||
nb_epoch = 20 | ||
|
||
######################################################################### | ||
# TRAINING SETTINGS # | ||
######################################################################### | ||
# path of training images | ||
imgs_train_path = '/path/to/training/images/' | ||
# path of training maps | ||
maps_train_path = '/path/to/training/maps/' | ||
# number of training images | ||
nb_imgs_train = 10000 | ||
# path of validation images | ||
imgs_val_path = '/path/to/validation/images/' | ||
# path of validation maps | ||
maps_val_path = '/path/to/validation/maps/' | ||
# number of validation images | ||
nb_imgs_val = 5000 | ||
|
||
def padding(img, shape_r=480, shape_c=640, channels=3): | ||
img_padded = np.zeros((shape_r, shape_c, channels), dtype=np.uint8) | ||
if channels == 1: | ||
img_padded = np.zeros((shape_r, shape_c), dtype=np.uint8) | ||
|
||
original_shape = img.shape | ||
rows_rate = original_shape[0] / shape_r | ||
cols_rate = original_shape[1] / shape_c | ||
|
||
if rows_rate > cols_rate: | ||
new_cols = (original_shape[1] * shape_r) // original_shape[0] | ||
img = cv2.resize(img, (new_cols, shape_r)) | ||
if new_cols > shape_c: | ||
new_cols = shape_c | ||
img_padded[:, ((img_padded.shape[1] - new_cols) // 2) | ||
:((img_padded.shape[1] - new_cols) // 2 + new_cols)] = img | ||
else: | ||
new_rows = (original_shape[0] * shape_c) // original_shape[1] | ||
img = cv2.resize(img, (shape_c, new_rows)) | ||
if new_rows > shape_r: | ||
new_rows = shape_r | ||
img_padded[((img_padded.shape[0] - new_rows) // 2) | ||
:((img_padded.shape[0] - new_rows) // 2 + new_rows), :] = img | ||
return img_padded | ||
|
||
|
||
def preprocess_image(original_image): | ||
padded_image = padding(original_image, shape_r, shape_c, 3) | ||
padded_image[:, :, 0] -= 103.939 | ||
padded_image[:, :, 1] -= 116.779 | ||
padded_image[:, :, 2] -= 123.68 | ||
padded_image = padded_image.transpose((2, 0, 1)) | ||
|
||
|
||
def postprocess_map(original_map): | ||
padded_map = padding(original_map, shape_r, shape_c, 1) | ||
return padded_map.astype(np.float32) / 255.0 | ||
|
||
|
||
def postprocess_prediction(pred, shape_r, shape_c): | ||
predictions_shape = pred.shape | ||
rows_rate = shape_r / predictions_shape[0] | ||
cols_rate = shape_c / predictions_shape[1] | ||
|
||
if rows_rate > cols_rate: | ||
new_cols = (predictions_shape[1] * shape_r) // predictions_shape[0] | ||
pred = cv2.resize(pred, (new_cols, shape_r)) | ||
img = pred[:, ((pred.shape[1] - shape_c) // 2) | ||
:((pred.shape[1] - shape_c) // 2 + shape_c)] | ||
else: | ||
new_rows = (predictions_shape[0] * shape_c) // predictions_shape[1] | ||
pred = cv2.resize(pred, (shape_c, new_rows)) | ||
img = pred[((pred.shape[0] - shape_r) // 2) | ||
:((pred.shape[0] - shape_r) // 2 + shape_r), :] | ||
|
||
return img / np.max(img) * 255 | ||
|
||
|
||
class MlnetModel(object): | ||
def __init__(self, vgg_weights_file, pkl_weights_file): | ||
self.vgg_weights_file = vgg_weights_file | ||
self.pkl_weights_file = pkl_weights_file | ||
|
||
def get_weights_vgg16(self, f, id): | ||
g = f['layer_{}'.format(id)] | ||
return [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])] | ||
|
||
def loss(self, y_true, y_pred): | ||
max_y = K.repeat_elements(K.expand_dims(K.repeat_elements( | ||
K.expand_dims(K.max(K.max(y_pred, axis=2), axis=2)), | ||
shape_r_gt, axis=-1)), shape_c_gt, axis=-1) | ||
return K.mean(K.square((y_pred / max_y) - y_true) / (1 - y_true + 0.1)) | ||
|
||
def initialize(self, img_rows=480, img_cols=640, | ||
downsampling_factor_net=8, downsampling_factor_product=10): | ||
f = h5py.File(self.vgg_weights_file) | ||
input_ml_net = Input(shape=(3, img_rows, img_cols)) | ||
######################################################### | ||
# FEATURE EXTRACTION NETWORK # | ||
######################################################### | ||
weights = self.get_weights_vgg16(f, 1) | ||
conv1_1 = Convolution2D(64, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(input_ml_net) | ||
weights = self.get_weights_vgg16(f, 3) | ||
conv1_2 = Convolution2D(64, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv1_1) | ||
conv1_pool = MaxPooling2D((2, 2), strides=(2, 2), | ||
border_mode='same')(conv1_2) | ||
|
||
weights = self.get_weights_vgg16(f, 6) | ||
conv2_1 = Convolution2D(128, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv1_pool) | ||
weights = self.get_weights_vgg16(f, 8) | ||
conv2_2 = Convolution2D(128, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv2_1) | ||
conv2_pool = MaxPooling2D((2, 2), strides=(2, 2), | ||
border_mode='same')(conv2_2) | ||
|
||
weights = self.get_weights_vgg16(f, 11) | ||
conv3_1 = Convolution2D(256, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv2_pool) | ||
weights = self.get_weights_vgg16(f, 13) | ||
conv3_2 = Convolution2D(256, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv3_1) | ||
weights = self.get_weights_vgg16(f, 15) | ||
conv3_3 = Convolution2D(256, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv3_2) | ||
conv3_pool = MaxPooling2D((2, 2), strides=(2, 2), | ||
border_mode='same')(conv3_3) | ||
|
||
weights = self.get_weights_vgg16(f, 18) | ||
conv4_1 = Convolution2D(512, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv3_pool) | ||
weights = self.get_weights_vgg16(f, 20) | ||
conv4_2 = Convolution2D(512, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv4_1) | ||
weights = self.get_weights_vgg16(f, 22) | ||
conv4_3 = Convolution2D(512, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv4_2) | ||
conv4_pool = MaxPooling2D((2, 2), strides=(1, 1), | ||
border_mode='same')(conv4_3) | ||
|
||
weights = self.get_weights_vgg16(f, 25) | ||
conv5_1 = Convolution2D(512, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv4_pool) | ||
weights = self.get_weights_vgg16(f, 27) | ||
conv5_2 = Convolution2D(512, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv5_1) | ||
weights = self.get_weights_vgg16(f, 29) | ||
conv5_3 = Convolution2D(512, 3, 3, weights=weights, activation='relu', | ||
border_mode='same')(conv5_2) | ||
|
||
######################################################### | ||
# ENCODING NETWORK # | ||
######################################################### | ||
concatenated = merge([conv3_pool, conv4_pool, conv5_3], mode='concat', | ||
concat_axis=1) | ||
dropout = Dropout(0.5)(concatenated) | ||
|
||
int_conv = Convolution2D(64, 3, 3, init='glorot_normal', | ||
activation='relu', border_mode='same')(dropout) | ||
|
||
pre_final_conv = Convolution2D(1, 1, 1, init='glorot_normal', | ||
activation='relu')(int_conv) | ||
|
||
######################################################### | ||
# PRIOR LEARNING # | ||
######################################################### | ||
rows_elt = math.ceil( | ||
img_rows / downsampling_factor_net) // downsampling_factor_product | ||
cols_elt = math.ceil( | ||
img_cols / downsampling_factor_net) // downsampling_factor_product | ||
eltprod = EltWiseProduct(init='zero', | ||
W_regularizer=l2(1 / (rows_elt * cols_elt)))(pre_final_conv) | ||
output_ml_net = Activation('relu')(eltprod) | ||
|
||
self.model = Model(input=[input_ml_net], output=[output_ml_net]) | ||
self.model.load_weights(self.pkl_weights_file) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
#!/usr/bin/env python3 | ||
from mlnet_model import * | ||
m = MlnetModel('weights/vgg16_weights.h5', 'weights/mlnet_salicon_weights.pkl') | ||
m.initialize() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters