Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for local models via Ollama #6

Merged
merged 3 commits into from
Feb 28, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions Ollama.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# Ollama setup
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Keeping most ollama-specific instructions separate to be less intrusive

1. Download and install [Ollama](https://ollama.com/)
2. Once Ollama is running on your system, run `ollama pull llama3.1`
> Currently this is a ~5GB download, it's best to download it before the workshop if you plan on using it
3. Update the `MODEL_NAME` in your `dot.env` file to `ollama`

You're now ready to begin the workshop! Head back to the [Readme.md](Readme.md)

## Restarting the workshop
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This may bear further investigation, but in my tests it was best to kill and re-create

Mixing use of llama and openai on the same Redis instance can cause unexpected behavior. If you want to switch from one to the other it is recommended to kill and re-create the instance. To do this:
1. Run `docker ps` and take note of the ID for the running image
2. `docker stop imageId`
3. `docker rm imageId`
4. Start a new instance using the command from earlier, `docker run -d --name redis -p 6379:6379 -p 8001:8001 redis/redis-stack:latest`
8 changes: 8 additions & 0 deletions Readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,10 @@ In this workshop, we are going to use [LangGraph](https://langchain-ai.github.io
- [docker](https://docs.docker.com/get-started/get-docker/)
- [openai api key](https://platform.openai.com/docs/quickstart)

## (Optional) Ollama
This workshop is optimized to run targeting OpenAI models. If you prefer to run locally however, you may do so via the experimental Ollama configuration.
* [Ollama setup instructions](Ollama.md)

## (Optional) helpers

- [LangSmith](https://docs.smith.langchain.com/)
Expand Down Expand Up @@ -235,7 +239,11 @@ In our scenario we want to be able to retrieve the time-bound information that t

### Steps:
- Open [participant_agent/utils/vector_store.py](participant_agent/utils/vector_store.py)
- Take note of how `embedding_model` is getting instantiated. If using Ollama then switch this for the appropriate embedding using `llama3.1` for the `model` parameter
> [OpenAI embeddings](https://python.langchain.com/docs/integrations/text_embedding/openai/) \
[Ollama embeddings](https://python.langchain.com/docs/integrations/text_embedding/ollama/)
- Where `vector_store=None` update to `vector_store = RedisVectorStore.from_documents(<docs>, <embedding_model>, config=<config>)` with the appropriate variables.

- Open [participant_agent/utils/tools.py](participant_agent/utils/tools.py)
- Uncomment code for retrieval tool
- Update the create_retriever_tool to take the correct params. Ex: `create_retriever_tool(vector_store.as_retriever(), "get_directions", "meaningful doc string")`
Expand Down
3 changes: 2 additions & 1 deletion dot.env
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,5 @@ OPENAI_API_KEY=openai_key
LANGCHAIN_TRACING_V2=
LANGCHAIN_ENDPOINT=
LANGCHAIN_API_KEY=
LANGCHAIN_PROJECT=
LANGCHAIN_PROJECT=
MODEL_NAME=openai
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

defaulting to openai

2 changes: 1 addition & 1 deletion example_agent/ex_graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@

# Define the config
class GraphConfig(TypedDict):
model_name: Literal["anthropic", "openai"]
model_name: Literal["anthropic", "openai", "ollama"]


# Define the function that determines whether to continue or not
Expand Down
14 changes: 12 additions & 2 deletions example_agent/utils/ex_nodes.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,26 @@
import os
from functools import lru_cache

from dotenv import load_dotenv
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI
from langchain_ollama import ChatOllama
from langgraph.prebuilt import ToolNode

from example_agent.utils.ex_tools import tools

from .ex_state import AgentState, MultipleChoiceResponse

load_dotenv()

ENVIRON_MODEL_NAME = os.environ.get("MODEL_NAME")

@lru_cache(maxsize=4)
def _get_tool_model(model_name: str):
if model_name == "openai":
model = ChatOpenAI(temperature=0, model_name="gpt-4o")
elif model_name == "ollama":
model = ChatOllama(temperature=0, model="llama3.1", num_ctx=4096)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

increasing the context from the default (which is pretty low) provided much more reliable results

else:
raise ValueError(f"Unsupported model type: {model_name}")

Expand All @@ -24,6 +32,8 @@ def _get_tool_model(model_name: str):
def _get_response_model(model_name: str):
if model_name == "openai":
model = ChatOpenAI(temperature=0, model_name="gpt-4o")
elif model_name == "ollama":
model = ChatOllama(temperature=0, model="llama3.1", num_ctx=4096)
else:
raise ValueError(f"Unsupported model type: {model_name}")

Expand All @@ -36,7 +46,7 @@ def multi_choice_structured(state: AgentState, config):
# We call the model with structured output in order to return the same format to the user every time
# state['messages'][-2] is the last ToolMessage in the convo, which we convert to a HumanMessage for the model to use
# We could also pass the entire chat history, but this saves tokens since all we care to structure is the output of the tool
model_name = config.get("configurable", {}).get("model_name", "openai")
model_name = config.get("configurable", {}).get("model_name", ENVIRON_MODEL_NAME)

response = _get_response_model(model_name).invoke(
[
Expand Down Expand Up @@ -75,7 +85,7 @@ def call_tool_model(state: AgentState, config):
messages = [{"role": "system", "content": system_prompt}] + state["messages"]

# Get from LangGraph config
model_name = config.get("configurable", {}).get("model_name", "openai")
model_name = config.get("configurable", {}).get("model_name", ENVIRON_MODEL_NAME)

# Get our model that binds our tools
model = _get_tool_model(model_name)
Expand Down
16 changes: 14 additions & 2 deletions example_agent/utils/ex_vector_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@
from dotenv import load_dotenv
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_ollama import OllamaEmbeddings
from redis import Redis
from langchain_redis import RedisConfig, RedisVectorStore

load_dotenv()
Expand All @@ -11,20 +13,30 @@
INDEX_NAME = os.environ.get("VECTOR_INDEX_NAME", "oregon_trail")

config = RedisConfig(index_name=INDEX_NAME, redis_url=REDIS_URL)
redis_client = Redis.from_url(REDIS_URL)

doc = Document(
page_content="the northern trail, of the blue mountains, was destroyed by a flood and is no longer safe to traverse. It is recommended to take the southern trail although it is longer."
)

# TODO: participant can change to whatever desired model
embedding_model = OpenAIEmbeddings()
# embedding_model = OllamaEmbeddings(model="llama3.1")

def _clean_existing(prefix):
for key in redis_client.scan_iter(f"{prefix}:*"):
redis_client.delete(key)

def get_vector_store():
try:
config.from_existing = True
vector_store = RedisVectorStore(OpenAIEmbeddings(), config=config)
vector_store = RedisVectorStore(embedding_model, config=config)
except:
print("Init vector store with document")
print("Clean any existing data in index")
_clean_existing(config.index_name)
config.from_existing = False
vector_store = RedisVectorStore.from_documents(
[doc], OpenAIEmbeddings(), config=config
[doc], embedding_model, config=config
)
return vector_store
2 changes: 1 addition & 1 deletion participant_agent/graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

# The graph config can be updated with LangGraph Studio which can be helpful
class GraphConfig(TypedDict):
model_name: Literal["openai"] # could add more LLM providers here
model_name: Literal["openai", "ollama"] # could add more LLM providers here


# Define the function that determines whether to continue or not
Expand Down
14 changes: 11 additions & 3 deletions participant_agent/utils/nodes.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,18 @@
import os
from functools import lru_cache

from dotenv import load_dotenv
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI
from langchain_ollama import ChatOllama
from langgraph.prebuilt import ToolNode

from participant_agent.utils.tools import tools

from .state import AgentState, MultipleChoiceResponse

load_dotenv()


# need to use this in call_tool_model function
@lru_cache(maxsize=4)
Expand All @@ -17,6 +22,8 @@ def _get_tool_model(model_name: str):
"""
if model_name == "openai":
model = ChatOpenAI(temperature=0, model_name="gpt-4o")
elif model_name == "ollama":
model = ChatOllama(temperature=0, model="llama3.1", num_ctx=4096)
else:
raise ValueError(f"Unsupported model type: {model_name}")

Expand All @@ -32,6 +39,8 @@ def _get_tool_model(model_name: str):
def _get_response_model(model_name: str):
if model_name == "openai":
model = ChatOpenAI(temperature=0, model_name="gpt-4o")
elif model_name == "ollama":
model = ChatOllama(temperature=0, model="llama3.1", num_ctx=4096)
else:
raise ValueError(f"Unsupported model type: {model_name}")

Expand All @@ -45,7 +54,7 @@ def multi_choice_structured(state: AgentState, config):
# We call the model with structured output in order to return the same format to the user every time
# state['messages'][-2] is the last ToolMessage in the convo, which we convert to a HumanMessage for the model to use
# We could also pass the entire chat history, but this saves tokens since all we care to structure is the output of the tool
model_name = config.get("configurable", {}).get("model_name", "openai")
model_name = config.get("configurable", {}).get("model_name", os.environ.get("MODEL_NAME"))

response = _get_response_model(model_name).invoke(
[
Expand Down Expand Up @@ -84,8 +93,7 @@ def call_tool_model(state: AgentState, config):
messages = [{"role": "system", "content": system_prompt}] + state["messages"]

# Get from LangGraph config
model_name = config.get("configurable", {}).get("model_name", "openai")

model_name = config.get("configurable", {}).get("model_name", os.environ.get("MODEL_NAME"))
# Get our model that binds our tools
model = _get_tool_model(model_name)

Expand Down
12 changes: 11 additions & 1 deletion participant_agent/utils/vector_store.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from dotenv import load_dotenv
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_ollama import OllamaEmbeddings
from langchain_redis import RedisConfig, RedisVectorStore

load_dotenv()
Expand All @@ -11,18 +12,27 @@
INDEX_NAME = os.environ.get("VECTOR_INDEX_NAME", "oregon_trail")

config = RedisConfig(index_name=INDEX_NAME, redis_url=REDIS_URL)
redis_client = Redis.from_url(REDIS_URL)

doc = Document(
page_content="the northern trail, of the blue mountains, was destroyed by a flood and is no longer safe to traverse. It is recommended to take the southern trail although it is longer."
)

# TODO: participant can change to whatever desired model
embedding_model = OpenAIEmbeddings()

def _clean_existing(prefix):
for key in redis_client.scan_iter(f"{prefix}:*"):
redis_client.delete(key)

def get_vector_store():
try:
config.from_existing = True
vector_store = RedisVectorStore(OpenAIEmbeddings(), config=config)
vector_store = RedisVectorStore(embedding_model, config=config)
except:
print("Init vector store with document")
print("Clean any existing data in index")
_clean_existing(config.index_name)
config.from_existing = False

# TODO: define vector store
Expand Down
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
langgraph==0.2.56
langchain==0.3.13
langchain-openai==0.2.3
langchain-ollama==0.2.3
langchain-redis==0.1.1
pydantic==2.9.2
python-dotenv==1.0.1
Expand Down
2 changes: 1 addition & 1 deletion test_example_oregon_trail.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ def test_1_wagon_leader(app):

res = graph.invoke({"messages": scenario["question"]})

assert res["messages"][-1].content == scenario["answer"]
assert scenario["answer"] in res["messages"][-1].content

print(f"\n response: {scenario['answer']}")

Expand Down
2 changes: 1 addition & 1 deletion test_participant_oregon_trail.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def test_1_wagon_leader(app):

res = graph.invoke({"messages": scenario["question"]})

assert res["messages"][-1].content == scenario["answer"]
assert scenario["answer"] in res["messages"][-1].content

print(f"\n response: {scenario['answer']}")

Expand Down
9 changes: 8 additions & 1 deletion test_setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,18 @@

from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain_ollama import ChatOllama
from redis import Redis

load_dotenv()

llm = ChatOpenAI(model="gpt-4o")
if os.environ.get("MODEL_NAME") == "openai":
llm = ChatOpenAI(model="gpt-4o")
elif os.environ.get("MODEL_NAME") == "ollama":
llm = ChatOllama(model="llama3.1")
else:
raise Exception("Setup failed, MODEL_NAME not defined in .env")

client = Redis.from_url(os.environ.get("REDIS_URL"))


Expand Down