Skip to content

intro: remove incorrect ' #246

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 27, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/intro.md
Original file line number Diff line number Diff line change
@@ -21,7 +21,7 @@ In concurrent programming, the program does multiple things at the same time (or

Because the operating system is not involved, *context switching* in the async world is very fast. Furthermore, async tasks have much lower memory overhead than operating system threads. This makes async programming a good fit for systems which need to handle very many concurrent tasks and where those tasks spend a lot of time waiting (for example, for client responses or for IO).

Async programming also offers the programmer fine-grained control over how tasks are executed (levels of parallelism and concurrency, control flow, scheduling, and so forth). This means that async programming can be expressive as well as ergonomic for many uses. In particular, async programming in Rust has a powerful concept of cancellation and supports many different flavours of concurrency (expressed using constructs including `spawn` and it's variations, `join`, `select`, `for_each_concurrent`, etc.). These allow composable and reusable implementations of concepts like timeouts, pausing, and throttling.
Async programming also offers the programmer fine-grained control over how tasks are executed (levels of parallelism and concurrency, control flow, scheduling, and so forth). This means that async programming can be expressive as well as ergonomic for many uses. In particular, async programming in Rust has a powerful concept of cancellation and supports many different flavours of concurrency (expressed using constructs including `spawn` and its variations, `join`, `select`, `for_each_concurrent`, etc.). These allow composable and reusable implementations of concepts like timeouts, pausing, and throttling.


## Hello, world!