-
Notifications
You must be signed in to change notification settings - Fork 15
Configs for wav2vec experiments #259
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
AndreasPlt
wants to merge
4
commits into
rwth-i6:main
Choose a base branch
from
AndreasPlt:fairseq_configs
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
63 changes: 63 additions & 0 deletions
63
...peech_100_ctc/fairseq_finetuning/ctc_standalone/sisyphus_configs/config_negatives_hard.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
from sisyphus import tk | ||
import os | ||
|
||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_100_ctc.fairseq_finetuning.ctc_standalone.experiments.ctc_phon.baseline import eow_phon_ls100_ctc_base | ||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_960_pretraining.wav2vec2.config_02_fairseq_phoneme import \ | ||
get_fairseq_root, \ | ||
run_fairseq_pretraining | ||
|
||
|
||
# pretraining | ||
other_target_pretrain_job = run_fairseq_pretraining( | ||
exp_name="monophone_negatives_other_target_v1", | ||
commit="1397363c5c0e3c4e3ab620be562730399c852493", | ||
python_exe_hash_overwrite="itc_python_launcher_py310_torch", | ||
negative_sampling_strategy="other_target", | ||
) | ||
|
||
|
||
neg_hard_pretrain_job = run_fairseq_pretraining( | ||
exp_name="monophone_negatives_hard_v1", | ||
commit="be51394d876428ad531e0786d80de43d6a8818af", | ||
python_exe_hash_overwrite="itc_python_launcher_py310_torch", | ||
negative_sampling_strategy="hard_negatives", | ||
) | ||
|
||
neg_hard_pretrain_jobs = dict() | ||
neg_hard_pretrain_jobs[0] = neg_hard_pretrain_job | ||
for start_cp in [50, 100, 150, 200, 250]: | ||
neg_hard_pretrain_jobs[start_cp] = run_fairseq_pretraining( | ||
exp_name=f"monophone_negatives_hard_after_{start_cp}ep_other_v1", | ||
commit="be51394d876428ad531e0786d80de43d6a8818af", | ||
python_exe_hash_overwrite="itc_python_launcher_py310_torch", | ||
checkpoint=other_target_pretrain_job.out_models[start_cp].model, | ||
negative_sampling_strategy="hard_negatives", | ||
) | ||
|
||
# fairseq root | ||
fairseq_root = get_fairseq_root(fairseq_exe=tk.Path("/usr/bin/python3")) | ||
|
||
# Finetuning | ||
base_model_conf = { | ||
"_name": "wav2vec_ctc", | ||
"apply_mask": True, | ||
"mask_prob": 0.65, | ||
"mask_channel_prob": 0.5, | ||
"mask_channel_length": 64, | ||
"layerdrop": 0.1, | ||
"activation_dropout": 0.1, | ||
"feature_grad_mult": 0.0, | ||
"freeze_finetune_updates": 10000, # was 0 in fairseq config | ||
} | ||
|
||
for start_cp in [50, 100, 150, 200, 250]: | ||
for additional_cp in range(50, 600+1-start_cp, 50): | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_hard_pretrain_jobs[start_cp].out_models[start_cp + additional_cp].model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join("w2v_negatives_hard", f"other_{start_cp}_hard_{additional_cp}"), | ||
fairseq_root=fairseq_root, | ||
) |
123 changes: 123 additions & 0 deletions
123
...eech_100_ctc/fairseq_finetuning/ctc_standalone/sisyphus_configs/config_negatives_other.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
from sisyphus import tk | ||
import os | ||
|
||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_100_ctc.fairseq_finetuning.ctc_standalone.experiments.ctc_phon.baseline import eow_phon_ls100_ctc_base | ||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_960_pretraining.wav2vec2.config_02_fairseq_phoneme import \ | ||
get_fairseq_root, \ | ||
run_fairseq_pretraining | ||
|
||
|
||
# pretraining | ||
neg_other_pretrain_job = run_fairseq_pretraining( | ||
exp_name="monophone_negatives_other_target_v1", | ||
commit="1397363c5c0e3c4e3ab620be562730399c852493", | ||
python_exe_hash_overwrite="itc_python_launcher_py310_torch", | ||
negative_sampling_strategy="other_target", | ||
) | ||
|
||
# fairseq root | ||
fairseq_root = get_fairseq_root(fairseq_exe=tk.Path("/usr/bin/python3")) | ||
|
||
# Finetuning | ||
|
||
base_model_conf = { | ||
"_name": "wav2vec_ctc", | ||
"apply_mask": True, | ||
"mask_prob": 0.65, | ||
"mask_channel_prob": 0.5, | ||
"mask_channel_length": 64, | ||
"layerdrop": 0.1, | ||
"activation_dropout": 0.1, | ||
"feature_grad_mult": 0.0, | ||
"freeze_finetune_updates": 10000, # was 0 in fairseq config | ||
} | ||
|
||
checkpoints = [100, 200, 300, 400, 500, 600] | ||
for checkpoint in checkpoints: | ||
# negative sampling | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[checkpoint].model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join("w2v_neg_sampling_other_target", f"checkpoint_{checkpoint}"), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
|
||
# finetuning experiments only for the last checkpoint | ||
AndreasPlt marked this conversation as resolved.
Show resolved
Hide resolved
|
||
final_cp = 600 | ||
# random vs phoneme mask in finetuning | ||
model_conf_w2v = base_model_conf.copy() # base model, no need to set `mask_strategy` and `mask_length` | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[final_cp].model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"random_spec", | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[final_cp].model | ||
model_conf_w2v["mask_strategy"] = "phonemes" | ||
model_conf_w2v["mask_length"] = 1 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"phoneme_spec", | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
# phoneme mask lengths in finetuning | ||
for mask_len in [1, 2]: | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[final_cp].model | ||
model_conf_w2v["mask_strategy"] = "phonemes" | ||
model_conf_w2v["mask_length"] = mask_len | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
f"{mask_len}_phoneme_spec", | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[final_cp].model | ||
model_conf_w2v["mask_strategy"] = "phonemes" | ||
model_conf_w2v["mask_length"] = 1 | ||
model_conf_w2v["mask_selection"] = "uniform" | ||
model_conf_w2v["mask_other"] = 1 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
"1_2_phoneme_spec", | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
# mask probability in finetuning | ||
for mask_prob in [0.35, 0.5, 0.65, 0.8]: | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_pretrain_job.out_models[final_cp].model | ||
model_conf_w2v["mask_strategy"] = "phonemes" | ||
model_conf_w2v["mask_prob"] = mask_prob | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target", | ||
f"{str(mask_prob).replace('.', '_')}_phoneme_mask_prob", # replace "." with "_" for the folder name | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) |
132 changes: 132 additions & 0 deletions
132
...seq_finetuning/ctc_standalone/sisyphus_configs/config_negatives_other_phoneme_boundary.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
from sisyphus import tk | ||
AndreasPlt marked this conversation as resolved.
Show resolved
Hide resolved
|
||
import os | ||
|
||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_100_ctc.fairseq_finetuning.ctc_standalone.experiments.ctc_phon.baseline import eow_phon_ls100_ctc_base | ||
from i6_experiments.users.vieting.experiments.librispeech.\ | ||
librispeech_960_pretraining.wav2vec2.config_02_fairseq_phoneme import \ | ||
get_fairseq_root, \ | ||
run_fairseq_pretraining | ||
|
||
# Pretraining | ||
neg_other_trg_phon_boundary_pretrain_job = run_fairseq_pretraining( | ||
exp_name="monophone_negatives_other_target_boundary_masking_v1", | ||
commit="87dec4ffcba2fd71e8838ca099a09816cddeff5b", | ||
negative_sampling_strategy="other_target", | ||
mask_strategy="phonemes", | ||
mask_length=1, | ||
) | ||
|
||
# fairseq root | ||
fairseq_root = get_fairseq_root(fairseq_exe=tk.Path("/usr/bin/python3")) | ||
|
||
# Finetuning | ||
base_model_conf = { | ||
"_name": "wav2vec_ctc", | ||
"apply_mask": True, | ||
"mask_prob": 0.65, | ||
"mask_channel_prob": 0.5, | ||
"mask_channel_length": 64, | ||
"layerdrop": 0.1, | ||
"activation_dropout": 0.1, | ||
"feature_grad_mult": 0.0, | ||
"freeze_finetune_updates": 10000, # was 0 in fairseq config | ||
} | ||
|
||
checkpoints = [100, 200, 300, 400, 500, 600] | ||
for checkpoint in checkpoints: | ||
# negative sampling + phoneme boundary masking | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_trg_phon_boundary_pretrain_job.out_models[checkpoint].model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target_phoneme_boundary_masking", | ||
f"checkpoint_{checkpoint}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
|
||
# finetuning experiments only for the last checkpoint | ||
final_cp = 600 | ||
# random vs phoneme mask in finetuning | ||
model_conf_w2v = base_model_conf.copy() # base model, no need to set `mask_strategy` and `mask_length` | ||
model_conf_w2v["w2v_path"] = neg_other_trg_phon_boundary_pretrain_job.out_models[final_cp].model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target_phoneme_boundary_masking", | ||
"phoneme_spec", | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_trg_phon_boundary_pretrain_job.out_models[final_cp].model | ||
model_conf_w2v["mask_strategy"] = "random" | ||
model_conf_w2v["mask_length"] = 10 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target_phoneme_boundary_masking", | ||
"random_spec", | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
# phoneme mask lengths in finetuning | ||
model_conf_w2v = base_model_conf.copy() # base model, no need to set `mask_length` | ||
model_conf_w2v["w2v_path"] = neg_other_trg_phon_boundary_pretrain_job.out_models[final_cp].model | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target_phoneme_boundary_masking", | ||
"1_phoneme_spec", | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_trg_phon_boundary_pretrain_job.out_models[final_cp].model | ||
model_conf_w2v["mask_length"] = 2 | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target_phoneme_boundary_masking", | ||
"2_phoneme_spec", | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_trg_phon_boundary_pretrain_job.out_models[final_cp].model | ||
model_conf_w2v["mask_length"] = 1 | ||
model_conf_w2v["mask_other"] = 1 | ||
model_conf_w2v["mask_selection"] = "uniform" | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target_phoneme_boundary_masking", | ||
"1_2_phoneme_spec", | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) | ||
|
||
# mask probability in finetuning | ||
for mask_prob in [0.35, 0.5, 0.65, 0.8]: | ||
model_conf_w2v = base_model_conf.copy() | ||
model_conf_w2v["w2v_path"] = neg_other_trg_phon_boundary_pretrain_job.out_models[final_cp].model | ||
model_conf_w2v["mask_prob"] = mask_prob | ||
eow_phon_ls100_ctc_base( | ||
model_conf_w2v=model_conf_w2v, | ||
train_name_suffix=os.path.join( | ||
"w2v_neg_sampling_other_target_phoneme_boundary_masking", | ||
f"{str(mask_prob).replace('.', '_')}_phoneme_mask_prob", # replace '.' with '_' | ||
f"checkpoint_{final_cp}" | ||
), | ||
fairseq_root=fairseq_root, | ||
) |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.