Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 1 addition & 47 deletions common/setups/rasr/hybrid_system.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,52 +107,6 @@ def __init__(
self.nn_checkpoints = {}

# -------------------- Helpers --------------------
@staticmethod
def adapt_returnn_config_for_recog(returnn_config: returnn.ReturnnConfig):
"""
Adapt a RETURNN config for recognition, e.g., remove loss and use log softmax activation in last layer

:param ReturnnConfig returnn_config:
:rtype ReturnnConfig:
"""
assert isinstance(returnn_config, returnn.ReturnnConfig)
config = copy.deepcopy(returnn_config)
forward_output_layer = config.config.get("forward_output_layer", "output")
network = config.config.get("network")
for layer_name, layer in network.items():
if layer.get("unit", None) in {"lstmp"}:
layer["unit"] = "nativelstm2"
if layer.get("target", None):
layer.pop("target")
layer.pop("loss", None)
layer.pop("loss_scale", None)
layer.pop("loss_opts", None)
if network[forward_output_layer]["class"] == "softmax":
network[forward_output_layer]["class"] = "linear"
network[forward_output_layer]["activation"] = "log_softmax"
elif network[forward_output_layer]["class"] == "linear":
if network[forward_output_layer]["activation"] == "softmax":
network[forward_output_layer]["activation"] = "log_softmax"
elif network[forward_output_layer]["activation"] == "sigmoid":
network[forward_output_layer]["activation"] = "log_sigmoid"
elif network[forward_output_layer]["activation"] == "exp":
network[forward_output_layer]["activation"] = None
elif network[forward_output_layer]["activation"] is None:
network[forward_output_layer]["activation"] = "log"
# target = 'classes'
if "cropped" in network:
if network["output"]["from"] == ["cropped"]:
network["output"]["from"] = "upsample"
network.pop("cropped")
if "lstm_bwd_1" in network:
network["lstm_bwd_1"]["from"] = "upsample"
network["lstm_fwd_1"]["from"] = "upsample"
if "lstm_fwd_1_no_init" in network:
network["lstm_bwd_1_no_init"]["from"] = "upsample"
network["lstm_fwd_1_no_init"]["from"] = "upsample"

return config

@staticmethod
def get_tf_flow(
checkpoint_path: Union[Path, returnn.Checkpoint],
Expand Down Expand Up @@ -492,7 +446,7 @@ def nn_recognition(
native_lstm_job.add_alias("%s/compile_native_op" % name)

graph_compile_job = returnn.CompileTFGraphJob(
self.adapt_returnn_config_for_recog(returnn_config),
returnn_config,
returnn_root=self.returnn_root,
returnn_python_exe=self.returnn_python_exe,
)
Expand Down