Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 48 additions & 0 deletions i6_models/parts/conformer/feedforward.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import Callable

import torch
from torch import nn

from i6_models.config import ModelConfiguration


@dataclass
class ConformerPositionwiseFeedForwardV1Config(ModelConfiguration):
input_dim: int
"""input dimension"""
hidden_dim: int
"""hidden dimension (normally set to 4*input_dim as suggested by the paper)"""
dropout: float
"""dropout probability"""
activation: Callable[[torch.Tensor], torch.Tensor] = nn.functional.silu
"""activation function"""


class ConformerPositionwiseFeedForwardV1(nn.Module):
"""
Conformer feedforward module
"""

def __init__(self, cfg: ConformerPositionwiseFeedForwardV1Config):
super().__init__()

self.layer_norm = nn.LayerNorm(cfg.input_dim)
self.linear_ff = nn.Linear(in_features=cfg.input_dim, out_features=cfg.hidden_dim, bias=True)
self.activation = cfg.activation
self.linear_out = nn.Linear(in_features=cfg.hidden_dim, out_features=cfg.input_dim, bias=True)
self.dropout = cfg.dropout

def forward(self, tensor: torch.Tensor) -> torch.Tensor:
"""
:param tensor: shape [B,T,F], F=input_dim
:return: shape [B,T,F], F=input_dim
"""
tensor = self.layer_norm(tensor)
tensor = self.linear_ff(tensor) # [B,T,F]
tensor = self.activation(tensor) # [B,T,F]
tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training) # [B,T,F]
tensor = self.linear_out(tensor) # [B,T,F]
tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training) # [B,T,F]
return tensor
3 changes: 2 additions & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
typeguard
typeguard
torch
24 changes: 24 additions & 0 deletions tests/test_conformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
from itertools import product

import torch
from torch import nn

from i6_models.parts.conformer.feedforward import (
ConformerPositionwiseFeedForwardV1,
ConformerPositionwiseFeedForwardV1Config,
)


def test_ConformerPositionwiseFeedForwardV1():
def get_output_shape(input_shape, input_dim, hidden_dim, dropout, activation):
x = torch.randn(input_shape)
cfg = ConformerPositionwiseFeedForwardV1Config(input_dim, hidden_dim, dropout, activation)
conf_ffn_part = ConformerPositionwiseFeedForwardV1(cfg)
y = conf_ffn_part(x)
return y.shape

for input_dim, hidden_dim, dropout, activation in product(
[10, 20], [100, 200], [0.1, 0.3], [nn.functional.silu, nn.functional.relu]
):
input_shape = (10, 100, input_dim)
assert get_output_shape(input_shape, input_dim, hidden_dim, dropout, activation) == input_shape