Skip to content

saheedniyi02/yarngpt

Repository files navigation

YarnGPT 🎙️

image/png A text-to-speech model generating natural Nigerian-accented English speech. Built on pure language modeling without external adapters.

Web Url: https://yarngpt.co/

Quick Start

!git clone https://github.com/saheedniyi02/yarngpt.git

pip install outetts uroman

import os
import re
import json
import torch
import inflect
import random
import uroman as ur
import numpy as np
import torchaudio
import IPython
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer


!wget https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml
!wget https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt


from yarngpt.audiotokenizer import AudioTokenizerV2

tokenizer_path="saheedniyi/YarnGPT2"
wav_tokenizer_config_path="/content/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
wav_tokenizer_model_path = "/content/wavtokenizer_large_speech_320_24k.ckpt"


audio_tokenizer=AudioTokenizerV2(
    tokenizer_path,wav_tokenizer_model_path,wav_tokenizer_config_path
    )


model = AutoModelForCausalLM.from_pretrained(tokenizer_path,torch_dtype="auto").to(audio_tokenizer.device)

#change the text
text="The election was won by businessman and politician, Moshood Abiola, but Babangida annulled the results, citing concerns over national security."

# change the language and voice
prompt=audio_tokenizer.create_prompt(text,lang="english",speaker_name="idera")

input_ids=audio_tokenizer.tokenize_prompt(prompt)

output  = model.generate(
            input_ids=input_ids,
            temperature=0.1,
            repetition_penalty=1.1,
            max_length=4000,
            #num_beams=5,# using a beam size helps for the local languages but not english
        )

codes=audio_tokenizer.get_codes(output)
audio=audio_tokenizer.get_audio(codes)
IPython.display.Audio(audio,rate=24000)
torchaudio.save(f"Sample.wav", audio, sample_rate=24000)

Features

  • 🗣️ 12 preset voices (6 male, 6 female)
  • 🎯 Trained on 2000+ hours of Nigerian audio
  • 🔊 24kHz high-quality audio output
  • 🚀 Simple API for quick integration
  • 📝 Support for long-form text

Available Voices

  • Female: zainab, idera, regina, chinenye, joke, remi
  • Male: jude, tayo, umar, osagie, onye, emma

Examples

Check out our demo notebook or listen to sample outputs.

Model Details

  • Base: HuggingFaceTB/SmolLM2-360M
  • Training: 5 epochs on A100 GPU
  • Data: Nigerian movies, podcasts, and open-source audio
  • Architecture: Pure language modeling approach

Limitations

  • English to Nigerian-accented English only
  • May not capture all Nigerian accent variations
  • Training data includes auto-generated content

Citation

@misc{yarngpt2025,
  author = {Saheed Azeez},
  title = {YarnGPT: Nigerian-Accented English Text-to-Speech Model},
  year = {2025},
  publisher = {Hugging Face}
}

License

MIT

Acknowledgments

Built with WavTokenizer and inspired by OuteTTS.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published