Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
470 changes: 470 additions & 0 deletions citations/citations_14112025.csv

Large diffs are not rendered by default.

759 changes: 410 additions & 349 deletions citations/dataset_modalities_lookup.csv

Large diffs are not rendered by default.

59 changes: 40 additions & 19 deletions citations/json/ds000246_citations.json
Original file line number Diff line number Diff line change
@@ -1,26 +1,47 @@
{
"dataset_id": "ds000246",
"num_citations": 1,
"date_last_updated": "2025-09-17T19:30:14.831679+00:00",
"num_citations": 2,
"date_last_updated": "2025-11-14T17:15:11.236411",
"metadata": {
"total_cumulative_citations": 123,
"fetch_date": "2025-09-17T19:30:14.831679+00:00",
"total_cumulative_citations": 181,
"fetch_date": "2025-11-14T17:15:11.236411",
"processing_version": "1.0"
},
"citation_details": [
{
"title": "MEG-BIDS, the brain imaging data structure extended to magnetoencephalography",
"author": "G Niso, KJ Gorgolewski, E Bock, et al.",
"author": "G Niso, KJ Gorgolewski, E Bock, TL Brooks, G Flandin",
"venue": "Scientific data",
"year": 2018,
"url": "https://www.nature.com/articles/sdata2018110",
"cited_by": 123,
"cited_by": 176,
"abstract": "We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with",
"short_author": "G Niso, KJ Gorgolewski, E Bock, et al.",
"confidence_scoring": {
"confidence_score": 0.6995742082595826,
"similarity_score": 0.6359765529632568,
"citation_text_length": 350,
"confidence_score": 0.7014782190322877,
"similarity_score": 0.6377074718475342,
"citation_text_length": 364,
"dataset_text_length": 2179,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
}
},
{
"title": "An OpenMind for 3D medical vision self-supervised learning",
"author": "T Wald, C Ulrich, J Suprijadi, S Ziegler",
"venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision",
"year": 2025,
"url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html",
"cited_by": 5,
"abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the",
"short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler",
"pages": "23839--23879",
"pub_type": "inproceedings",
"bib_id": "wald2025openmind",
"confidence_scoring": {
"confidence_score": 0.31867208003997805,
"similarity_score": 0.2759065628051758,
"citation_text_length": 386,
"dataset_text_length": 2179,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
Expand All @@ -29,18 +50,18 @@
],
"confidence_scoring": {
"model_used": "Qwen/Qwen3-Embedding-0.6B",
"scoring_date": "2025-09-17T22:45:49.011410+00:00",
"scoring_date": "2025-11-15T01:46:20.830688+00:00",
"dataset_text_length": 2179,
"num_citations_scored": 1,
"num_citations_scored": 2,
"summary_stats": {
"mean_confidence": 0.6995742082595826,
"median_confidence": 0.6995742082595826,
"std_confidence": 0.0,
"min_confidence": 0.6995742082595826,
"max_confidence": 0.6995742082595826,
"high_confidence_count": 0,
"medium_confidence_count": 1,
"low_confidence_count": 0
"mean_confidence": 0.5100751495361329,
"median_confidence": 0.5100751495361329,
"std_confidence": 0.19140306949615482,
"min_confidence": 0.31867208003997805,
"max_confidence": 0.7014782190322877,
"high_confidence_count": 1,
"medium_confidence_count": 0,
"low_confidence_count": 1
}
}
}
98 changes: 67 additions & 31 deletions citations/json/ds000247_citations.json
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
{
"dataset_id": "ds000247",
"num_citations": 3,
"date_last_updated": "2025-09-17T19:30:14.836478+00:00",
"num_citations": 5,
"date_last_updated": "2025-11-14T17:15:59.909657",
"metadata": {
"total_cumulative_citations": 186,
"fetch_date": "2025-09-17T19:30:14.836478+00:00",
"total_cumulative_citations": 285,
"fetch_date": "2025-11-14T17:15:59.909657",
"processing_version": "1.0"
},
"citation_details": [
Expand All @@ -13,8 +13,8 @@
"author": "G Niso, F Tadel, E Bock, M Cousineau",
"venue": "Frontiers in neuroscience",
"year": 2019,
"url": "https://www.frontiersin.org/articles/10.3389/fnins.2019.00284/full",
"cited_by": 62,
"url": "https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.00284/full",
"cited_by": 104,
"abstract": "We present a simple, reproducible analysis pipeline applied to resting-state magnetoencephalography (MEG) data from the Open MEG Archive (OMEGA). The data workflow",
"short_author": "G Niso, F Tadel, E Bock, M Cousineau",
"publisher": "Frontiers Media SA",
Expand All @@ -34,58 +34,94 @@
},
{
"title": "MEG-BIDS, the brain imaging data structure extended to magnetoencephalography",
"author": "G Niso, KJ Gorgolewski, E Bock, et al.",
"author": "G Niso, KJ Gorgolewski, E Bock, TL Brooks, G Flandin",
"venue": "Scientific data",
"year": 2018,
"url": "https://www.nature.com/articles/sdata2018110",
"cited_by": 123,
"cited_by": 176,
"abstract": "We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with",
"short_author": "G Niso, KJ Gorgolewski, E Bock, et al.",
"confidence_scoring": {
"confidence_score": 0.7032613277435303,
"similarity_score": 0.6393284797668457,
"citation_text_length": 350,
"confidence_score": 0.7041680932044984,
"similarity_score": 0.6401528120040894,
"citation_text_length": 364,
"dataset_text_length": 2260,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
}
},
{
"title": "Comparative study of detection of ADHD using EEG signals",
"author": "V Anchana, KS Biju",
"venue": "2023 International Conference on Control, Communication and Computing (ICCC)",
"year": 2023,
"url": "https://ieeexplore.ieee.org/abstract/document/10165395/",
"cited_by": 1,
"abstract": "Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental irregularity which is complex, universal and heterogeneous. Inattention, hyperactivity and impulsiveness are",
"short_author": "V Anchana, KS Biju",
"pages": "1--6",
"pub_type": "inproceedings",
"bib_id": "anchana2023comparative",
"title": "Evaluating oscillatory mechanisms underlying flexible neural communication in the human brain",
"author": "V Madan Mohan, TF Varley, AM Harris, RFH Cash",
"venue": "bioRxiv",
"year": 2025,
"url": "https://www.biorxiv.org/content/10.1101/2025.10.16.682957.abstract",
"cited_by": 0,
"abstract": "How the brain orchestrates the flow of information between its multiple functional units flexibly, quickly, and accurately, remains a fundamental question in neuroscience. Multiple",
"short_author": "V Madan Mohan, TF Varley, AM Harris, RFH Cash",
"confidence_scoring": {
"confidence_score": 0.37965504705905917,
"similarity_score": 0.32870566844940186,
"citation_text_length": 365,
"dataset_text_length": 2260,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
}
},
{
"title": "M-ECG: Extracting Heart Signals with a Novel Computational Analysis of Magnetoencephalography Data",
"author": "A Izadysadr, HS Bagherzadeh, JR Stapleton-Kotloski",
"venue": "bioRxiv",
"year": 2025,
"url": "https://www.biorxiv.org/content/10.1101/2025.04.17.649325.abstract",
"cited_by": 0,
"abstract": "Magnetoencephalography (MEG) measures the magnetic fields generated by neural activity with high temporal and spatial resolution. Because of its focus on brain activity, other",
"short_author": "A Izadysadr, HS Bagherzadeh, JR Stapleton-Kotloski",
"confidence_scoring": {
"confidence_score": 0.4327778573334218,
"similarity_score": 0.3746994435787201,
"confidence_score": 0.681436820626259,
"similarity_score": 0.5899885892868042,
"citation_text_length": 370,
"dataset_text_length": 2260,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
}
},
{
"title": "An OpenMind for 3D medical vision self-supervised learning",
"author": "T Wald, C Ulrich, J Suprijadi, S Ziegler",
"venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision",
"year": 2025,
"url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html",
"cited_by": 5,
"abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the",
"short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler",
"pages": "23839--23879",
"pub_type": "inproceedings",
"bib_id": "wald2025openmind",
"confidence_scoring": {
"confidence_score": 0.36505543470382695,
"similarity_score": 0.31606531143188477,
"citation_text_length": 386,
"dataset_text_length": 2260,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
}
}
],
"confidence_scoring": {
"model_used": "Qwen/Qwen3-Embedding-0.6B",
"scoring_date": "2025-09-17T22:45:52.036788+00:00",
"scoring_date": "2025-11-15T01:46:25.771679+00:00",
"dataset_text_length": 2260,
"num_citations_scored": 3,
"num_citations_scored": 5,
"summary_stats": {
"mean_confidence": 0.6484360713263353,
"median_confidence": 0.7032613277435303,
"std_confidence": 0.1585155242096468,
"min_confidence": 0.4327778573334218,
"mean_confidence": 0.5879168848991394,
"median_confidence": 0.681436820626259,
"std_confidence": 0.18127179182058809,
"min_confidence": 0.36505543470382695,
"max_confidence": 0.8092690289020539,
"high_confidence_count": 2,
"medium_confidence_count": 1,
"low_confidence_count": 0
"low_confidence_count": 2
}
}
}
93 changes: 57 additions & 36 deletions citations/json/ds000248_citations.json
Original file line number Diff line number Diff line change
@@ -1,47 +1,65 @@
{
"dataset_id": "ds000248",
"num_citations": 4,
"date_last_updated": "2025-09-17T19:30:14.818414+00:00",
"num_citations": 5,
"date_last_updated": "2025-11-14T17:15:52.947363",
"metadata": {
"total_cumulative_citations": 133,
"fetch_date": "2025-09-17T19:30:14.818414+00:00",
"total_cumulative_citations": 196,
"fetch_date": "2025-11-14T17:15:52.947363",
"processing_version": "1.0"
},
"citation_details": [
{
"title": "Tools for importing and evaluating BIDS-EEG formatted data",
"author": "A Delorme, D Truong",
"author": "A Delorme, D Truong, R Martinez-Cancino",
"venue": "2021 10th International IEEE/EMBS Conference on Neural Engineering (NER)",
"year": 2021,
"url": "https://ieeexplore.ieee.org/abstract/document/9441399/",
"cited_by": 9,
"abstract": "This article outlines a set of plug-in tools running on MATLAB to automatically import, preprocess, and evaluate the quality of electro-encephalography (EEG) data stored using the Brain",
"short_author": "A Delorme, D Truong",
"url": "https://drive.google.com/file/d/1-f7rhJeyTUKX2FIG0FNM0RvG3iNqYFV8/view",
"cited_by": 15,
"abstract": "MATLAB to automatically import, preprocess, and evaluate the quality of EEG data stored using the Brain Imaging Data Structure BIDS-EEG standard. As a proof of concept, we apply",
"short_author": "A Delorme, D Truong, R Martinez-Cancino",
"pages": "210--213",
"pub_type": "inproceedings",
"bib_id": "delorme2021tools",
"confidence_scoring": {
"confidence_score": 0.7810986059904099,
"similarity_score": 0.6762758493423462,
"citation_text_length": 374,
"confidence_score": 0.793280232846737,
"similarity_score": 0.6868227124214172,
"citation_text_length": 386,
"dataset_text_length": 2128,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
}
},
{
"title": "A Principled Field Theory of Consciousness: From Informational Free Energy to Fractal Dynamics",
"author": "D Solis",
"venue": "NA",
"year": 2025,
"url": "https://dubito-ergo.com/A_Principled_Field_Theory_of_Consciousness_From_Informational_Free_Energy_to_Fractal_Dynamics.pdf",
"cited_by": 0,
"abstract": "We propose a field theory of consciousness where subjective experience is modeled as a classical complex field C (r, t) emerging from neural dynamics. Unlike prior models, our theory",
"short_author": "D Solis",
"confidence_scoring": {
"confidence_score": 0.42161934614181523,
"similarity_score": 0.3650383949279785,
"citation_text_length": 325,
"dataset_text_length": 2128,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
}
},
{
"title": "MEG-BIDS, the brain imaging data structure extended to magnetoencephalography",
"author": "G Niso, KJ Gorgolewski, E Bock, et al.",
"author": "G Niso, KJ Gorgolewski, E Bock, TL Brooks, G Flandin",
"venue": "Scientific data",
"year": 2018,
"url": "https://www.nature.com/articles/sdata2018110",
"cited_by": 123,
"cited_by": 176,
"abstract": "We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with",
"short_author": "G Niso, KJ Gorgolewski, E Bock, et al.",
"confidence_scoring": {
"confidence_score": 0.7605413675308228,
"similarity_score": 0.6914012432098389,
"citation_text_length": 350,
"confidence_score": 0.7613269686698915,
"similarity_score": 0.6921154260635376,
"citation_text_length": 364,
"dataset_text_length": 2128,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
Expand All @@ -66,18 +84,21 @@
}
},
{
"title": "Contributions pour l'analyse automatique de signaux neuronaux",
"author": "M Jas",
"venue": "NA",
"year": 2018,
"url": "https://www.theses.fr/2018ENST0021",
"cited_by": 1,
"abstract": "Les expériences d’électrophysiologie ont longtemps reposé sur de petites cohortes de sujets pour découvrir des effets d’intérêt significatifs. Toutefois, la faible taille de l’échantillon se",
"short_author": "M Jas",
"title": "An OpenMind for 3D medical vision self-supervised learning",
"author": "T Wald, C Ulrich, J Suprijadi, S Ziegler",
"venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision",
"year": 2025,
"url": "https://openaccess.thecvf.com/content/ICCV2025/html/Wald_An_OpenMind_for_3D_Medical_Vision_Self-supervised_Learning_ICCV_2025_paper.html",
"cited_by": 5,
"abstract": "The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the",
"short_author": "T Wald, C Ulrich, J Suprijadi, S Ziegler",
"pages": "23839--23879",
"pub_type": "inproceedings",
"bib_id": "wald2025openmind",
"confidence_scoring": {
"confidence_score": 0.556741338968277,
"similarity_score": 0.5061284899711609,
"citation_text_length": 298,
"confidence_score": 0.365006659179926,
"similarity_score": 0.3160230815410614,
"citation_text_length": 386,
"dataset_text_length": 2128,
"scoring_method": "sentence_transformers",
"model_used": "Qwen/Qwen3-Embedding-0.6B"
Expand All @@ -86,18 +107,18 @@
],
"confidence_scoring": {
"model_used": "Qwen/Qwen3-Embedding-0.6B",
"scoring_date": "2025-09-17T22:45:56.064878+00:00",
"scoring_date": "2025-11-15T01:46:30.892424+00:00",
"dataset_text_length": 2128,
"num_citations_scored": 4,
"num_citations_scored": 5,
"summary_stats": {
"mean_confidence": 0.6638184447586537,
"median_confidence": 0.6587169170379639,
"std_confidence": 0.10724811351430094,
"min_confidence": 0.556741338968277,
"max_confidence": 0.7810986059904099,
"mean_confidence": 0.579625134676695,
"median_confidence": 0.556892466545105,
"std_confidence": 0.17332498428444112,
"min_confidence": 0.365006659179926,
"max_confidence": 0.793280232846737,
"high_confidence_count": 2,
"medium_confidence_count": 2,
"low_confidence_count": 0
"low_confidence_count": 1
}
}
}
Loading
Loading