Skip to content

Commit

Permalink
Merge pull request #932 from serengil/feat-task-2312-unit-tests
Browse files Browse the repository at this point in the history
Arranging Unit Tests
  • Loading branch information
serengil authored Dec 24, 2023
2 parents fda758a + 27f0619 commit 58945bd
Show file tree
Hide file tree
Showing 11 changed files with 375 additions and 407 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ jobs:
- name: Test with pytest
run: |
cd tests
pytest unit_tests.py
python -m pytest . -s --disable-warnings
linting:
needs: unit-tests

Expand Down
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
test:
cd tests && python -m pytest unit_tests.py -s --disable-warnings
cd tests && python -m pytest . -s --disable-warnings

lint:
python -m pylint deepface/ --fail-under=10
22 changes: 11 additions & 11 deletions deepface/DeepFace.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@
from deepface.commons import functions, realtime, distance as dst
from deepface.commons.logger import Logger

# pylint: disable=no-else-raise
# pylint: disable=no-else-raise, simplifiable-if-expression

logger = Logger(module="DeepFace")

Expand Down Expand Up @@ -221,7 +221,7 @@ def verify(
toc = time.time()

resp_obj = {
"verified": distance <= threshold,
"verified": True if distance <= threshold else False,
"distance": distance,
"threshold": threshold,
"model": model_name,
Expand All @@ -236,7 +236,7 @@ def verify(

def analyze(
img_path: Union[str, np.ndarray],
actions: Tuple[str, ...] = ("emotion", "age", "gender", "race"),
actions: Union[tuple, list] = ("emotion", "age", "gender", "race"),
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
Expand Down Expand Up @@ -414,14 +414,14 @@ def analyze(

def find(
img_path: Union[str, np.ndarray],
db_path : str,
model_name : str ="VGG-Face",
distance_metric : str ="cosine",
enforce_detection : bool =True,
detector_backend : str ="opencv",
align : bool = True,
normalization : str ="base",
silent : bool = False,
db_path: str,
model_name: str = "VGG-Face",
distance_metric: str = "cosine",
enforce_detection: bool = True,
detector_backend: str = "opencv",
align: bool = True,
normalization: str = "base",
silent: bool = False,
) -> List[pd.DataFrame]:
"""
This function applies verification several times and find the identities in a database
Expand Down
4 changes: 1 addition & 3 deletions deepface/commons/functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,9 +104,7 @@ def load_image(img):
# The image is a url
if img.startswith("http"):
return (
np.array(Image.open(requests.get(img, stream=True, timeout=60).raw).convert("BGR"))[
:, :, ::-1
],
np.array(Image.open(requests.get(img, stream=True, timeout=60).raw).convert("BGR")),
# return url as image name
img,
)
Expand Down
133 changes: 133 additions & 0 deletions tests/test_analyze.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
import cv2
from deepface import DeepFace
from deepface.commons.logger import Logger

logger = Logger("tests/test_analyze.py")

detectors = ["opencv", "mtcnn"]


def test_standard_analyze():
img = "dataset/img4.jpg"
demography_objs = DeepFace.analyze(img, silent=True)
for demography in demography_objs:
logger.debug(demography)
assert demography["age"] > 20 and demography["age"] < 40
assert demography["dominant_gender"] == "Woman"
logger.info("✅ test standard analyze done")


def test_analyze_with_all_actions_as_tuple():
img = "dataset/img4.jpg"
demography_objs = DeepFace.analyze(
img, actions=("age", "gender", "race", "emotion"), silent=True
)

for demography in demography_objs:
logger.debug(f"Demography: {demography}")
age = demography["age"]
gender = demography["dominant_gender"]
race = demography["dominant_race"]
emotion = demography["dominant_emotion"]
logger.debug(f"Age: {age}")
logger.debug(f"Gender: {gender}")
logger.debug(f"Race: {race}")
logger.debug(f"Emotion: {emotion}")
assert demography.get("age") is not None
assert demography.get("dominant_gender") is not None
assert demography.get("dominant_race") is not None
assert demography.get("dominant_emotion") is not None

logger.info("✅ test analyze for all actions as tuple done")


def test_analyze_with_all_actions_as_list():
img = "dataset/img4.jpg"
demography_objs = DeepFace.analyze(
img, actions=["age", "gender", "race", "emotion"], silent=True
)

for demography in demography_objs:
logger.debug(f"Demography: {demography}")
age = demography["age"]
gender = demography["dominant_gender"]
race = demography["dominant_race"]
emotion = demography["dominant_emotion"]
logger.debug(f"Age: {age}")
logger.debug(f"Gender: {gender}")
logger.debug(f"Race: {race}")
logger.debug(f"Emotion: {emotion}")
assert demography.get("age") is not None
assert demography.get("dominant_gender") is not None
assert demography.get("dominant_race") is not None
assert demography.get("dominant_emotion") is not None

logger.info("✅ test analyze for all actions as array done")


def test_analyze_for_some_actions():
img = "dataset/img4.jpg"
demography_objs = DeepFace.analyze(img, ["age", "gender"], silent=True)

for demography in demography_objs:
age = demography["age"]
gender = demography["dominant_gender"]

logger.debug(f"Age: { age }")
logger.debug(f"Gender: {gender}")

assert demography.get("age") is not None
assert demography.get("dominant_gender") is not None

# these are not in actions
assert demography.get("dominant_race") is None
assert demography.get("dominant_emotion") is None

logger.info("✅ test analyze for some actions done")


def test_analyze_for_preloaded_image():
img = cv2.imread("dataset/img1.jpg")
resp_objs = DeepFace.analyze(img, silent=True)
for resp_obj in resp_objs:
logger.debug(resp_obj)
assert resp_obj["age"] > 20 and resp_obj["age"] < 40
assert resp_obj["dominant_gender"] == "Woman"

logger.info("✅ test analyze for pre-loaded image done")


def test_analyze_for_different_detectors():
img_paths = [
"dataset/img1.jpg",
"dataset/img5.jpg",
"dataset/img6.jpg",
"dataset/img8.jpg",
"dataset/img1.jpg",
"dataset/img2.jpg",
"dataset/img1.jpg",
"dataset/img2.jpg",
"dataset/img6.jpg",
"dataset/img6.jpg",
]

for img_path in img_paths:
for detector in detectors:
results = DeepFace.analyze(
img_path, actions=("gender",), detector_backend=detector, enforce_detection=False
)
for result in results:
logger.debug(result)

# validate keys
assert "gender" in result.keys()
assert "dominant_gender" in result.keys() and result["dominant_gender"] in [
"Man",
"Woman",
]

# validate probabilities
if result["dominant_gender"] == "Man":
assert result["gender"]["Man"] > result["gender"]["Woman"]
else:
assert result["gender"]["Man"] < result["gender"]["Woman"]
46 changes: 46 additions & 0 deletions tests/test_enforce_detection.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
import pytest
import numpy as np
from deepface import DeepFace
from deepface.commons.logger import Logger

logger = Logger("tests/test_enforce_detection.py")


def test_enabled_enforce_detection_for_non_facial_input():
black_img = np.zeros([224, 224, 3])

with pytest.raises(ValueError, match="Face could not be detected."):
DeepFace.represent(img_path=black_img)

with pytest.raises(ValueError, match="Face could not be detected."):
DeepFace.verify(img1_path=black_img, img2_path=black_img)

logger.info("✅ enabled enforce detection with non facial input tests done")


def test_disabled_enforce_detection_for_non_facial_input_on_represent():
black_img = np.zeros([224, 224, 3])
objs = DeepFace.represent(img_path=black_img, enforce_detection=False)

assert isinstance(objs, list)
assert len(objs) > 0
assert isinstance(objs[0], dict)
assert "embedding" in objs[0].keys()
assert "facial_area" in objs[0].keys()
assert isinstance(objs[0]["facial_area"], dict)
assert "x" in objs[0]["facial_area"].keys()
assert "y" in objs[0]["facial_area"].keys()
assert "w" in objs[0]["facial_area"].keys()
assert "h" in objs[0]["facial_area"].keys()
assert isinstance(objs[0]["embedding"], list)
assert len(objs[0]["embedding"]) == 2622 # embedding of VGG-Face

logger.info("✅ disabled enforce detection with non facial input test for represent tests done")


def test_disabled_enforce_detection_for_non_facial_input_on_verify():
black_img = np.zeros([224, 224, 3])
obj = DeepFace.verify(img1_path=black_img, img2_path=black_img, enforce_detection=False)
assert isinstance(obj, dict)

logger.info("✅ disabled enforce detection with non facial input test for verify tests done")
24 changes: 24 additions & 0 deletions tests/test_extract_faces.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
from deepface import DeepFace
from deepface.commons.logger import Logger

logger = Logger("tests/test_extract_faces.py")


def test_different_detectors():
detectors = ["opencv", "mtcnn"]

for detector in detectors:
img_objs = DeepFace.extract_faces(img_path="dataset/img11.jpg", detector_backend=detector)
for img_obj in img_objs:
assert "face" in img_obj.keys()
assert "facial_area" in img_obj.keys()
assert isinstance(img_obj["facial_area"], dict)
assert "x" in img_obj["facial_area"].keys()
assert "y" in img_obj["facial_area"].keys()
assert "w" in img_obj["facial_area"].keys()
assert "h" in img_obj["facial_area"].keys()
assert "confidence" in img_obj.keys()

img = img_obj["face"]
assert img.shape[0] > 0 and img.shape[1] > 0
logger.info(f"✅ extract_faces for {detector} backend test is done")
26 changes: 26 additions & 0 deletions tests/test_find.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
import cv2
import pandas as pd
from deepface import DeepFace
from deepface.commons.logger import Logger

logger = Logger("tests/test_find.py")


def test_find_with_exact_path():
dfs = DeepFace.find(img_path="dataset/img1.jpg", db_path="dataset", silent=True)
for df in dfs:
assert isinstance(df, pd.DataFrame)
logger.debug(df.head())
assert df.shape[0] > 0
logger.info("✅ test find for exact path done")


def test_find_with_array_input():
img1 = cv2.imread("dataset/img1.jpg")
dfs = DeepFace.find(img1, db_path="dataset", silent=True)

for df in dfs:
logger.debug(df.head())
assert df.shape[0] > 0

logger.info("✅ test find for array input done")
30 changes: 30 additions & 0 deletions tests/test_represent.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
from deepface import DeepFace
from deepface.commons.logger import Logger

logger = Logger("tests/test_represent.py")


def test_standard_represent():
img_path = "dataset/img1.jpg"
embedding_objs = DeepFace.represent(img_path)
for embedding_obj in embedding_objs:
embedding = embedding_obj["embedding"]
logger.info(f"Function returned {len(embedding)} dimensional vector")
assert len(embedding) == 2622
logger.info("✅ test standard represent function done")


def test_represent_for_skipped_detector_backend():
face_img = "dataset/img5.jpg"
img_objs = DeepFace.represent(img_path=face_img, detector_backend="skip")
assert len(img_objs) >= 1
img_obj = img_objs[0]
assert "embedding" in img_obj.keys()
assert "facial_area" in img_obj.keys()
assert isinstance(img_obj["facial_area"], dict)
assert "x" in img_obj["facial_area"].keys()
assert "y" in img_obj["facial_area"].keys()
assert "w" in img_obj["facial_area"].keys()
assert "h" in img_obj["facial_area"].keys()
assert "face_confidence" in img_obj.keys()
logger.info("✅ test represent function for skipped detector backend done")
Loading

0 comments on commit 58945bd

Please sign in to comment.