Skip to content

sfc-gh-twhite/ibisml

 
 

Repository files navigation

IbisML

Build status Docs License PyPI

ibisml is a work-in-progress library for developing Machine Learning feature engineering pipelines using ibis. These pipelines can then be used to transform and feed data to other machine learning libraries like xgboost or scikit-learn.

import ibis
import ibisml as ml

# Load some training and testing data
train = ibis.read_csv("training.csv")
test = ibis.read_csv("testing.csv")

# A recipe for a feature engineering pipeline that:
# - imputes missing values in numeric columns with their mean
# - applies standard scaling to all numeric columns
# - one-hot-encodes all nominal columns
recipe = ml.Recipe(
    ml.ImputeMean(ml.numeric()),
    ml.ScaleStandard(ml.numeric()),
    ml.OneHotEncode(ml.nominal()),
)

# Fit the recipe against the training data
transform = recipe.fit(train, outcomes=["outcome_col"])

# Transform the training data and train a scikit-learn model
from sklearn.svm import LinearSVC
model = LinearSVC()

df_train = transform(train).to_pandas()
X = df_train[transform.features]
y = df_train[transform.outcomes]
model.fit(X, y)

# Transform the testing data and use the model to predict results
df_test = transform(test).to_pandas()
X = df_test[transform.features]
y = df_test[transform.outcomes]
y_pred = model.predict(X)

By using ibis for preprocessing and feature engineering, feature engineering pipelines may be compiled to SQL and executed on a wide range of performant and scalable backends. No more need to rewrite code for production deployments, pipelines may be developed locally (against e.g. duckdb) and deployed to production (against e.g. spark) with only a single line of code change.

Help Wanted!

ibisml is a work-in-progress. If you're interested in getting involved (whether through feature requests, PRs, or just sharing opinions), we'd love to hear from you.

About

A WIP library for developing ML pipelines using Ibis

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%