This project uses the Pima Indians Diabetes Dataset to predict whether a person is diabetic using health data and a Machine Learning model.
- Used Random Forest Classifier
- Scaled inputs using StandardScaler
- Achieved ~81% accuracy
- Accepts real-time user input for prediction
- Python
- Jupyter Notebook
- pandas, numpy
- scikit-learn (ML magic)
- Source: Pima Indians Diabetes Dataset
- Total Rows: 768
- Columns:
- Pregnancies
- Glucose
- Blood Pressure
- Skin Thickness
- Insulin
- BMI
- Diabetes Pedigree Function
- Age
- Outcome (0 = Not Diabetic, 1 = Diabetic)
# Example input
[5, 160, 70, 32, 100, 35.0, 0.8, 42]
Model Output
"β οΈ Diabetic Detected"- Clone the repo:
git clone https://github.com/siddhikasavant/Diabetes-Prediction.git
- Open main.ipynb in Jupyter
- Run all cells & try testing your own values