Skip to content

PoC of a container with Json API for ML models in Rust

License

Notifications You must be signed in to change notification settings

siddthartha/enso-ml

Repository files navigation

enso-ml-net

A PoC of simple asynchronuous json API for running ML-models tasks via Redis queue.

Pipelines based on huggingface/candle ML framework (https://github.com/huggingface/candle)

GitHub Actions Workflow Status GitHub Actions Workflow Status

Principle schema

graph TD
    A[Client] -- HTTP GET /api/render --> B((Enso ML API))
    B -. task uuid .-> A
    B -.publish.-> C[[Redis task queue]]
    C -.subscribe.-> D[Enso Worker GPU 2]
    C -.subscribe.-> E[Enso Worker GPU 1]
    E --> F
    D --> F{{FS / MinIO / S3 storage}}
    F --GET /result/uuid-step.jpg--> A
Loading

API

GET /render/?prompt=Some+prompt

  • required fields:
parameter type
prompt string
  • avaiable fields:
parameter type default value
seed signed 64-bit integer 64-bit random number
width unsigned 32-bit integer 768
height unsigned 32-bit integer 768
steps unsigned 8-bit integer in range [1-50] 24
version unsigned 8-bit integer in range [1-4] 3 (SDXL 1.0)
intermediates bool true
  • result is a JSON-representation of a task:
    {
        "uuid":"44aecf11-69f2-3d5e-7617-52b2c6bb80a8",
        "prompt":"beauty%20and%20the%20beast",
        "seed":-3321392915133399677,
        "width":768,
        "height":768,
        "steps":24,
        "intermediates":true,
        "version":3
    }
    
  • uuid can be used to fetch result image for every step like /result/{uuid}-{step}.jpg

GET /api/health

  • result:
{
  "status": false,
  "uuid": "2099f4ea-a10a-7162-96ea-88f80edd20aa",
  "has_cuda": true
}

Usage with RunPod

  • Create and run CPU Pod from official Redis image (redis:latest for example)
  • Create pod with Enso ML community template (https://runpod.io/console/deploy?template=6b448rr6cb&ref=6isqvo6h)
  • Set ENSO_REDIS_HOST=redis://{REDIS_POD_URL}:{REDIS_POD_EXTERNAL_PORT} variable in that template
  • Now you can put the task to queue:
    • Get /render/?prompt=some+prompt&steps=25&height=1024&width=768 to start processing
    • Take uuid field from response
    • Try to get /result/{uuid}.jpg while it becomes ready or try to see intermediatory timesteps like /result/{uuid}-{step}.jpg
      • At first time you should wait while weights will be downloaded from HuggingFace to Pod storage cache
    • Also any such pod from this template can be tested by hands via simple debug GUI on https://pod-url/
      • it's pretty simple yet and looks like this:
        alt text alt text

Usage in local docker

  • Clone this repository
  • Run docker-compose up --build -d in root folder
  • Run task:
    • curl http://localhost:80/api/render/?prompt=Some%20prompt

TODO:

  • 1.5, 2.1, SDXL 1.0, SDXL Turbo support
  • putting results to S3
    • fetch as Base64
  • WebSockets for GUI progress & logging
  • multiple GPU devices support
  • load balancing / improving queues
  • other various ML-pipelines from Candle
    • LLMs
    • Yolo
    • SAM

You can donate my work on this repository or some wanted features

USDT/TRC20 address TWwumLM9UXZbZdW8ySqWNNNkoqvQJ8PMdK

About

PoC of a container with Json API for ML models in Rust

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published