Skip to content

Conversation

@y-arjun-y
Copy link

According to updates to the timm module after Oct 10, 2022 (available in version >= 0.9):
image

@sbrl
Copy link

sbrl commented Jul 5, 2024

Yeah, I came across this issue too.

I can confirm that this patch would fix the issue. I independently fixed it myself before I learnt of this PR though, so I include my own .patch file below, including a typographical error I found in a comment.


diff --git a/models/efficientformer.py b/models/efficientformer.py
index a379823..66e0c4e 100644
--- a/models/efficientformer.py
+++ b/models/efficientformer.py
@@ -10,9 +10,9 @@ from typing import Dict
 import itertools
 
 from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
-from timm.models.layers import DropPath, trunc_normal_
+from timm.models.layers import DropPath, trunc_normal_, to_2tuple
 from timm.models.registry import register_model
-from timm.models.layers.helpers import to_2tuple
+# from timm.models.layers.helpers import to_2tuple
 
 EfficientFormer_width = {
     'l1': [48, 96, 224, 448],
diff --git a/models/efficientformer_v2.py b/models/efficientformer_v2.py
index 48234a4..1f4fcde 100644
--- a/models/efficientformer_v2.py
+++ b/models/efficientformer_v2.py
@@ -11,9 +11,9 @@ from typing import Dict
 import itertools
 
 from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
-from timm.models.layers import DropPath, trunc_normal_
+from timm.models.layers import DropPath, trunc_normal_, to_2tuple
 from timm.models.registry import register_model
-from timm.models.layers.helpers import to_2tuple
+# from timm.models.layers.helpers import to_2tuple
 
 EfficientFormer_width = {
     'L': [40, 80, 192, 384],  # 26m 83.3% 6attn
@@ -631,7 +631,7 @@ class EfficientFormerV2(nn.Module):
         x = self.patch_embed(x)
         x = self.forward_tokens(x)
         if self.fork_feat:
-            # otuput features of four stages for dense prediction
+            # output features of four stages for dense prediction
             return x
         # print(x.size())
         x = self.norm(x)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants