Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions scGeneFit/data_files/__init__.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,12 @@

import scipy.io
try:
import importlib.resources as importlib_resources
except ImportError:
# In PY<3.7 fall-back to backported `importlib_resources`.
import importlib_resources

def get_data(filename):
with importlib_resources.path(__name__, filename) as foo:
return str(foo)
src = importlib_resources.files(__name__).joinpath(filename)
with importlib_resources.as_file(src) as foo:
return scipy.io.loadmat(str(foo))
14 changes: 7 additions & 7 deletions scGeneFit/functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -358,40 +358,40 @@ def performance(self, markers):

def load_example_data(name):
if name=="CITEseq":
a = scipy.io.loadmat(data_files.get_data("CITEseq.mat"))
a = data_files.get_data("CITEseq.mat")
data= a['G'].T
N,d=data.shape
#transformation from integer entries
data=np.log(data+np.ones(data.shape))
for i in range(N):
data[i,:]=data[i,:]/np.linalg.norm(data[i,:])
#load labels from file
a = scipy.io.loadmat(data_files.get_data("CITEseq-labels.mat"))
a = data_files.get_data("CITEseq-labels.mat")
l_aux = a['labels']
labels = np.array([i for [i] in l_aux])
#load names from file
a = scipy.io.loadmat(data_files.get_data("CITEseq_names.mat"))
a = data_files.get_data("CITEseq_names.mat")
names=[a['citeseq_names'][i][0][0] for i in range(N)]
return [data, labels, names]
elif name=="zeisel":
#load data from file
a = scipy.io.loadmat(data_files.get_data("zeisel_data.mat"))
a = data_files.get_data("zeisel_data.mat")
data= a['zeisel_data'].T
N,d=data.shape

#load labels (first level of the hierarchy) from file
a = scipy.io.loadmat(data_files.get_data("zeisel_labels1.mat"))
a = data_files.get_data("zeisel_labels1.mat")
l_aux = a['zeisel_labels1']
l_0=[l_aux[i][0] for i in range(l_aux.shape[0])]
#load labels (second level of the hierarchy) from file
a = scipy.io.loadmat(data_files.get_data("zeisel_labels2.mat"))
a = data_files.get_data("zeisel_labels2.mat")
l_aux = a['zeisel_labels2']
l_1=[l_aux[i][0] for i in range(l_aux.shape[0])]
#construct an array with hierarchy labels
labels=np.array([l_0, l_1])

# load names from file
a = scipy.io.loadmat(data_files.get_data("zeisel_names.mat"))
a = data_files.get_data("zeisel_names.mat")
names0=[a['zeisel_names'][i][0][0] for i in range(N)]
names1=[a['zeisel_names'][i][1][0] for i in range(N)]
return [data, labels, [names0,names1]]
Expand Down