Skip to content

stacksjs/ts-collect

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Social Card of this repo

npm version GitHub Actions Commitizen friendly

ts-collect

A powerful, fully-typed collections library for TypeScript, combining Laravel's collection elegance with advanced data processing capabilities. Features a fluent API, lazy evaluation, statistical analysis, machine learning operations, and comprehensive data manipulation toolsβ€”all with zero dependencies.

Features

  • Lightweight & Dependency-free
  • Type safe
  • Laravel-inspired APIs

Core Operations (Laravel Collection API)

Advanced Array & Object Operations

Advanced Transformations

Statistical Operations

Time Series Analysis

Machine Learning Operations

Async & Performance Optimization

Data Validation & Quality

Text Processing

Serialization & Export

Streaming & I/O

Advanced Mathematical Operations

Special Data Types Support

Versioning & History

Development Tools

Utility Features

Available Methods

Please note, all of these methods may be chained to fluently manipulate the underlying data:

API Methods API Methods API Methods
aggregate all as
assertValid avg batch
benchmark cache cartesianProduct
cast chunk collapse
combine configure contains
containsAll containsOneItem convolve
correlate count countBy
crossJoin cursor dateTime
debug dd describe
detectAnomalies differentiate diffAssoc
diffKeys diffUsing doesntContain
dump duplicates each
eachSpread entropy everyAsync
explain except fft
filter filterAsync first
firstOrFail firstWhere flatten
flatMap flip forPage
forecast forget fromStream
fuzzyMatch geoDistance get
groupBy groupByMultiple has
having impute implode
index instrument integrate
intersect isEmpty isNotEmpty
join kmeans keyBy
keys knn kurtosis
last lazy leftJoin
linearRegression lower macro
make map mapAsync
mapInto mapOption mapSpread
mapToDictionary mapToGroups mapUntil
mapWithKeys max median
memoize merge mergeRecursive
metrics min mode
money movingAverage naiveBayes
ngrams nth normalize
omit only optimize
outliers pad paginate
parallel partition percentile
pick pipe pivot
pivotTable pop power
prefetch prepend product
profile pull push
put query random
reduce reduceAsync reject
removeOutliers replace replaceRecursive
reverse sanitize scan
search seasonality sentiment
shift shuffle skip
skipUntil skipWhile slice
slug sole someAsync
sort sortBy sortByDesc
sortDesc sortKeys sortKeysDesc
splice split standardDeviation
stream sum symmetricDiff
tap take takeUntil
takeWhile timeSeries times
toArray toCSV toElastic
toGraphQL toJSON toMap
toPandas toSet toSQL
toXML transform trend
union unless unlessEmpty
unlessNotEmpty unfold unwrap
upper validate validateSync
values variance when
whenEmpty whenNotEmpty where
whereBetween whereIn whereInstanceOf
whereLike whereNotBetween whereNotIn
whereNotNull whereNull whereRegex
wordFrequency wrap zscore

Get Started

bun install ts-collect

Usage

Basic Collection Operations

import { collect } from 'ts-collect'

// Create a collection
const collection = collect([1, 2, 3, 4, 5])

// Basic operations with chaining
const result = collection
  .map(n => n * 2) // [2, 4, 6, 8, 10]
  .filter(n => n > 5) // [6, 8, 10]
  .take(2) // [6, 8]
  .toArray()

// Unique values with custom key
const users = collect([
  { id: 1, role: 'admin' },
  { id: 2, role: 'user' },
  { id: 3, role: 'admin' }
])
const uniqueRoles = users.unique('role') // [{ id: 1, role: 'admin' }, { id: 2, role: 'user' }]

// Chunk data into smaller arrays
const chunks = collection.chunk(2) // [[1, 2], [3, 4], [5]]

// Find elements
const first = collection.first() // 1
const last = collection.last() // 5
const secondItem = collection.nth(1) // 2

// all() - Get all items as array
const items = collection.all() // [1, 2, 3, 4, 5]

// average/avg - Calculate average of items
collection.average() // 3
collection.avg() // 3

// chunk - Split collection into smaller collections
collection.chunk(2) // [[1, 2], [3, 4], [5]]

// collapse - Flatten a collection of arrays
const nested = collect([[1, 2], [3, 4], [5]])
nested.collapse() // [1, 2, 3, 4, 5]

// combine - Create collection by combining arrays
const keys = collect(['name', 'age'])
const values = ['John', 25]
keys.combine(values) // { name: 'John', age: 25 }

// contains/containsOneItem - Check for item existence
collection.contains(3) // true
collection.containsOneItem() // false

// countBy - Count occurrences by value
const items = collect(['apple', 'banana', 'apple', 'orange'])
items.countBy() // Map { 'apple' => 2, 'banana' => 1, 'orange' => 1 }

// diff/diffAssoc/diffKeys - Find differences between collections
const col1 = collect([1, 2, 3])
const col2 = collect([2, 3, 4])
col1.diff(col2) // [1]

// dd/dump - Dump collection and die or just dump
collection.dump() // Console logs items
collection.dd() // Console logs and exits

// each/eachSpread - Iterate over items
collection.each(item => console.log(item))
collection.eachSpread((a, b) => console.log(a, b)) // For array items

// except/only - Get all items except/only specified keys
const user = collect({ id: 1, name: 'John', age: 25 })
user.except('age') // { id: 1, name: 'John' }
user.only('name', 'age') // { name: 'John', age: 25 }

// firstOrFail - Get first item or throw
collection.firstOrFail() // 1 or throws if empty

// firstWhere - Get first item matching criteria
const users = collect([
  { id: 1, name: 'John' },
  { id: 2, name: 'Jane' }
])
users.firstWhere('name', 'Jane') // { id: 2, name: 'Jane' }

// flip - Swap keys and values
const flipped = collect({ name: 'John' }).flip() // { John: 'name' }

// forget - Remove an item by key
const array = collect(['a', 'b', 'c'])
array.forget(1) // ['a', 'c']

// has/get - Check key existence / Get value
const item = collect({ name: 'John' })
item.has('name') // true
item.get('name') // 'John'

// mapInto - Map items into new class instances
class User {
  name: string = ''
  greet() { return `Hello ${this.name}` }
}
collect([{ name: 'John' }])
  .mapInto(User)
  .first()
  .greet() // "Hello John"

// prepend/push/put - Add items
collection.prepend(0) // [0, 1, 2, 3, 4, 5]
collection.push(6) // [1, 2, 3, 4, 5, 6]
collection.put('key', 'value') // Adds/updates key-value

// random - Get random item(s)
collection.random() // Random item
collection.random(2) // Array of 2 random items

// skip/skipUntil/skipWhile - Skip items
collection.skip(2) // [3, 4, 5]
collection.skipUntil(3) // [3, 4, 5]
collection.skipWhile(n => n < 3) // [3, 4, 5]

// sole - Get only item in single-item collection
collect([1]).sole() // 1 (throws if not exactly one item)

// take/takeUntil/takeWhile - Take items
collection.take(2) // [1, 2]
collection.takeUntil(3) // [1, 2]
collection.takeWhile(n => n < 3) // [1, 2]

// when/unless - Conditional execution
collection
  .when(true, col => col.take(3))
  .unless(false, col => col.take(2))

// wrap/unwrap - Wrap/unwrap value in collection
collect().wrap([1, 2, 3]) // Collection([1, 2, 3])
collection.unwrap() // [1, 2, 3]

Working with Objects

interface User {
  id: number
  name: string
  role: string
}

const users: User[] = [
  { id: 1, name: 'John', role: 'admin' },
  { id: 2, name: 'Jane', role: 'user' },
  { id: 3, name: 'Bob', role: 'user' }
]

const collection = collect(users)

// Group by a key
const byRole = collection.groupBy('role')
// Map { 'admin' => [{ id: 1, ... }], 'user' => [{ id: 2, ... }, { id: 3, ... }] }

// Pluck specific values
const names = collection.pluck('name')
// ['John', 'Jane', 'Bob']

// Find where
const admins = collection.where('role', 'admin')
// [{ id: 1, name: 'John', role: 'admin' }]

Advanced Array & Object Operations

interface User {
  id: number
  name: string
  role: string
  department: string
  salary: number
  joinedAt: Date
}

const users: User[] = [
  {
    id: 1,
    name: 'John',
    role: 'admin',
    department: 'IT',
    salary: 80000,
    joinedAt: new Date('2023-01-15')
  },
  {
    id: 2,
    name: 'Jane',
    role: 'manager',
    department: 'Sales',
    salary: 90000,
    joinedAt: new Date('2023-03-20')
  },
  {
    id: 3,
    name: 'Bob',
    role: 'developer',
    department: 'IT',
    salary: 75000,
    joinedAt: new Date('2023-06-10')
  }
]

const collection = collect(users)

// Complex grouping by multiple fields
const groupedUsers = collection.groupByMultiple('department', 'role')
// Map {
//   'IT::admin' => [{ id: 1, ... }],
//   'Sales::manager' => [{ id: 2, ... }],
//   'IT::developer' => [{ id: 3, ... }]
// }

// Advanced filtering combinations
const seniorITStaff = collection
  .where('department', 'IT')
  .filter((user) => {
    const monthsEmployed = (new Date().getTime() - user.joinedAt.getTime()) / (1000 * 60 * 60 * 24 * 30)
    return monthsEmployed > 6
  })
  .whereBetween('salary', 70000, 85000)
  .toArray()

// Sort by multiple fields
const sorted = collection
  .sortBy('department')
  .sortBy('salary', 'desc')
  .toArray()

// Transform data structure
const transformed = collection.transform<{ fullName: string, info: string }>({
  fullName: user => user.name,
  info: user => `${user.role} in ${user.department}`
})

// Pagination
const page = collection.paginate(2, 1) // 2 items per page, first page
// {
//   data: [...],
//   total: 3,
//   perPage: 2,
//   currentPage: 1,
//   lastPage: 2,
//   hasMorePages: true
// }

Advanced Filtering & Pattern Matching

interface Product {
  id: number
  name: string
  description: string
  price: number
  categories: string[]
  inStock: boolean
}

const products = collect<Product>([
  {
    id: 1,
    name: 'Premium Laptop',
    description: 'High-performance laptop with 16GB RAM',
    price: 1299.99,
    categories: ['electronics', 'computers'],
    inStock: true
  },
  // ... more products
])

// Fuzzy search
const searchResults = products.fuzzyMatch('name', 'laptop', 0.8)

// Regular expression matching
const matched = products.whereRegex('description', /\d+GB/)

// Complex conditional filtering
const filtered = products
  .when(true, collection =>
    collection.filter(p => p.price > 1000))
  .unless(false, collection =>
    collection.filter(p => p.inStock))

// Pattern matching with whereLike
const pattern = products.whereLike('name', '%Laptop%')

Statistical Operations

const numbers = collect([1, 2, 3, 4, 5, 6])

numbers.sum() // 21
numbers.avg() // 3.5
numbers.median() // 3.5
numbers.min() // 1
numbers.max() // 6
numbers.standardDeviation() // { population: 1.707825127659933, sample: 1.8708286933869707 }

Time Series Data

const timeData = [
  { date: '2024-01-01', value: 100 },
  { date: '2024-01-02', value: 150 },
  { date: '2024-01-03', value: 120 }
]

const series = collect(timeData).timeSeries({
  dateField: 'date',
  valueField: 'value',
  interval: 'day'
})

// Calculate moving average
const movingAvg = series.movingAverage({ window: 2 })

Lazy Evaluation

const huge = collect(Array.from({ length: 1000000 }, (_, i) => i))

// Operations are deferred until needed
const result = huge
  .lazy()
  .filter(n => n % 2 === 0)
  .map(n => n * 2)
  .take(5)
  .toArray()

Async Operations & Batch Processing

// Process large datasets in batches
const largeDataset = collect(Array.from({ length: 10000 }, (_, i) => ({
  id: i,
  data: `Data ${i}`
})))

// Parallel processing with batches
await largeDataset.parallel(
  async (batch) => {
    const processed = await processItems(batch)
    return processed
  },
  { chunks: 4, maxConcurrency: 2 }
)

// Async mapping
const asyncMapped = await largeDataset
  .mapAsync(async (item) => {
    const result = await fetchDataForItem(item)
    return { ...item, ...result }
  })

// Batch processing with cursor
for await (const batch of largeDataset.cursor(100)) {
  await processBatch(batch)
}

Data Validation & Sanitization

interface UserData {
  email: string
  age: number
  username: string
}

const userData = collect<UserData>([
  { email: '[email protected]', age: 25, username: 'john_doe' },
  { email: 'invalid-email', age: -5, username: 'admin' }
])

// Validate data
const validationResult = await userData.validate({
  email: [
    email => /^[^@]+@[^@][^.@]*\.[^@]+$/.test(email),
    email => email.length <= 255
  ],
  age: [
    age => age >= 0,
    age => age <= 120
  ],
  username: [
    username => username.length >= 3,
    username => /^\w+$/.test(username)
  ]
})

// Sanitize data
const sanitized = userData.sanitize({
  email: email => email.toLowerCase().trim(),
  age: age => Math.max(0, Math.min(120, age)),
  username: username => username.toLowerCase().replace(/\W/g, '')
})

Data Analysis & Statistics

interface SalesData {
  product: string
  revenue: number
  cost: number
  date: string
  region: string
}

const sales: SalesData[] = [
  { product: 'A', revenue: 100, cost: 50, date: '2024-01-01', region: 'North' },
  { product: 'B', revenue: 200, cost: 80, date: '2024-01-01', region: 'South' },
  { product: 'A', revenue: 150, cost: 60, date: '2024-01-02', region: 'North' },
  { product: 'B', revenue: 180, cost: 75, date: '2024-01-02', region: 'South' },
]

const salesCollection = collect(sales)

// Advanced statistical analysis
const stats = salesCollection
  .describe('revenue') // Get statistical summary
  .pluck('revenue')
  .pipe(numbers => ({
    sum: numbers.sum(),
    average: numbers.avg(),
    median: numbers.median(),
    stdDev: numbers.standardDeviation(),
    variance: numbers.variance()
  }))

// Pivot table analysis
const pivotData = salesCollection.pivotTable(
  'product', // rows
  'region', // columns
  'revenue', // values
  'sum' // aggregation method
)

// Time series analysis with moving averages
const timeSeries = salesCollection
  .timeSeries({
    dateField: 'date',
    valueField: 'revenue',
    interval: 'day'
  })
  .movingAverage({ window: 2, centered: true })

// Correlation analysis
const correlation = salesCollection.correlate('revenue', 'cost')

// Detect anomalies in revenue
const anomalies = salesCollection.detectAnomalies({
  method: 'zscore',
  threshold: 2,
  features: ['revenue']
})

Performance Optimization

// Cache expensive operations
const cached = collection
  .map(expensiveOperation)
  .cache(60000) // Cache for 60 seconds

// Lazy evaluation for large datasets
const lazy = collection
  .lazy()
  .filter(predicate)
  .map(transform)
  .take(10)

// Optimize queries with indexing
const indexed = collection
  .index(['id', 'category'])
  .where('category', 'electronics')
  .where('id', 123)

// Profile performance
const metrics = await collection.profile()
// { time: 123, memory: 456 }

// Instrumentation
collection
  .instrument(stats => console.log('Operation stats:', stats))
  .map(transform)
  .filter(predicate)

Advanced Serialization

// Export to different formats
const json = collection.toJSON({ pretty: true })
const csv = collection.toCSV()
const xml = collection.toXML()

// SQL generation
const sql = collection.toSQL('users')

// GraphQL query generation
const graphql = collection.toGraphQL('User')

// Elasticsearch bulk format
const elastic = collection.toElastic('users')

// Pandas DataFrame generation
const pandas = collection.toPandas()

Type Safety

interface Product {
  id: number
  name: string
  price: number
}

// Collection is fully typed
const products = collect<Product>([
  { id: 1, name: 'Widget', price: 9.99 }
])

// TypeScript will catch errors
products.where('invalid', 'value') // Type error!

For more detailed documentation and examples, please visit our documentation site.

Testing

bun test

Changelog

Please see our releases page for more information on what has changed recently.

Contributing

Please see CONTRIBUTING for details.

Community

For help, discussion about best practices, or any other conversation that would benefit from being searchable:

Discussions on GitHub

For casual chit-chat with others using this package:

Join the Stacks Discord Server

Postcardware

Stacks OSS will always stay open-sourced, and we will always love to receive postcards from wherever Stacks is used! And we also publish them on our website. Thank you, Spatie.

Our address: Stacks.js, 12665 Village Ln #2306, Playa Vista, CA 90094, United States 🌎

Sponsors

We would like to extend our thanks to the following sponsors for funding Stacks development. If you are interested in becoming a sponsor, please reach out to us.

Credits

Thanks to...

πŸ“„ License

The MIT License (MIT). Please see LICENSE for more information.

Made with πŸ’™

About

πŸ’¨ Lightweight & powerful Laravel-like Collections written for TypeScript.

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •