Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Multivariate students t distribution #176

Closed
wants to merge 9 commits into from
2 changes: 2 additions & 0 deletions src/distribution/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ pub use self::laplace::Laplace;
pub use self::log_normal::LogNormal;
pub use self::multinomial::Multinomial;
pub use self::multivariate_normal::MultivariateNormal;
pub use self::multivariate_students_t::MultivariateStudent;
pub use self::negative_binomial::NegativeBinomial;
pub use self::normal::Normal;
pub use self::pareto::Pareto;
Expand Down Expand Up @@ -59,6 +60,7 @@ mod laplace;
mod log_normal;
mod multinomial;
mod multivariate_normal;
mod multivariate_students_t;
mod negative_binomial;
mod normal;
mod pareto;
Expand Down
29 changes: 28 additions & 1 deletion src/distribution/multivariate_normal.rs
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
use crate::distribution::Continuous;
use crate::distribution::Normal;
use crate::distribution::{MultivariateStudent, Normal};
use crate::statistics::{Max, MeanN, Min, Mode, VarianceN};
use crate::{Result, StatsError};
use nalgebra::{
Expand Down Expand Up @@ -98,6 +98,26 @@ impl MultivariateNormal {
.ln(),
)
}

/// Constructs a new multivariate normal distribution from a
/// multivariate students t distribution, which have equal variables
/// when `mvs.freedom == f64::INFINITY`
pub fn from_students(mvs: MultivariateStudent) -> Result<Self> {
let mu = mvs.location();
let scale = mvs.scale();
let cov_det = scale.determinant();
let pdf_const = ((2. * PI).powi(mu.nrows() as i32) * cov_det.abs())
.recip()
.sqrt();
Ok(MultivariateNormal {
dim: mvs.dim(),
cov_chol_decomp: mvs.scale_chol_decomp(),
mu: mvs.location(),
cov: mvs.scale(),
precision: mvs.precision(),
pdf_const,
})
}
}

impl ::rand::distributions::Distribution<DVector<f64>> for MultivariateNormal {
Expand Down Expand Up @@ -353,4 +373,11 @@ mod tests {
test_case(vec![0., 0.], vec![f64::INFINITY, 0., 0., f64::INFINITY], f64::NEG_INFINITY, ln_pdf(dvec![10., 10.]));
test_case(vec![0., 0.], vec![f64::INFINITY, 0., 0., f64::INFINITY], f64::NEG_INFINITY, ln_pdf(dvec![100., 100.]));
}

#[test]
#[should_panic]
fn test_pdf_mismatched_arg_size() {
let mvn = MultivariateNormal::new(vec![0., 0.], vec![1., 0., 0., 1.,]).unwrap();
mvn.pdf(&dvec![1.]); // x.size != mu.size
}
}
Loading
Loading