Skip to content
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
255 changes: 255 additions & 0 deletions lib/node_modules/@stdlib/stats/base/dists/wald/mean/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,255 @@
<!--

@license Apache-2.0

Copyright (c) 2026 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# Mean

> [Wald][wald-distribution] distribution [expected value][mean].

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

The [expected value][mean] for a [wald][wald-distribution] random variable with mean `μ` and shape parameter `λ > 0` is
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Since the distribution is named after a person, Abraham Wald, we should capitalize it here and elsewhere and use "Wald distribution".


<!-- <equation class="equation" label="eq:wald_expectation" align="center" raw="\mathbb{E}\left[ X \right] = \mu" alt="Expected value for a normal distribution."> -->
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Incorrectly referring to normal distribution here and below.


```math
\mathbb{E}\left[ X \right] = \mu
```

<!-- <div class="equation" align="center" data-raw-text="\mathbb{E}\left[ X \right] = \mu" data-equation="eq:normal_expectation">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/normal/mean/docs/img/equation_normal_expectation.svg" alt="Expected value for a normal distribution.">
<br>
</div> -->

<!-- </equation> -->

</section>

<!-- /.intro -->

<!-- Package usage documentation. -->

<section class="usage">

## Usage

```javascript
var mean = require( '@stdlib/stats/base/dists/wald/mean' );
```

#### mean( mu, lambda )

Returns the [expected value][mean] for a [wald][wald-distribution] distribution with parameters `mu` (mean) and `lambda` (shape parameter).

```javascript
var y = mean( 2.0, 1.0 );
// returns 2.0

y = mean( 0.0, 1.0 );
// returns NaN

y = mean( -1.0, 4.0 );
// returns NaN
```

If provided `NaN` as any argument, the function returns `NaN`.

```javascript
var y = mean( NaN, 1.0 );
// returns NaN

y = mean( 0.0, NaN );
// returns NaN
```

If provided `mu <= 0` or `lambda <= 0`, the function returns `NaN`.

```javascript
var y = mean( 0.0, 0.0 );
// returns NaN

y = mean( 0.0, -1.0 );
// returns NaN

y = mean( -1.0, 0.0 );
// returns NaN
```

</section>

<!-- /.usage -->

<!-- Package usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- Package usage examples. -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var uniform = require( '@stdlib/random/array/uniform' );
var logEachMap = require( '@stdlib/console/log-each-map' );
var EPS = require( '@stdlib/constants/float64/eps' );
var mean = require( '@stdlib/stats/base/dists/wald/mean' );

var opts = {
'dtype': 'float64'
};
var mu = uniform( 10, EPS, 10.0, opts );
var lambda = uniform( 10, EPS, 20.0, opts );

logEachMap( 'µ: %0.4f, λ: %0.4f, E(X;µ,λ): %0.4f', mu, lambda, mean );
```

</section>

<!-- /.examples -->

<!-- Section to include cited references. If references are included, add a horizontal rule *before* the section. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="references">

</section>

<!-- /.references -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section to include C API documentation. -->

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

<!-- /.intro -->

<!-- C API usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/stats/base/dists/wald/mean.h"
```

#### stdlib_base_dists_wald_mean( mu, lambda )

Returns the expected value for a [wald][wald-distribution] distribution with mean `mu` and shape parameter `lambda`.

- **mu**: `[in] double` mean.
- **lambda**: `[in] double` shape parameter.

```c
double stdlib_base_dists_wald_mean( const double mu, const double lambda );
```

</section>

<!-- /.usage -->

<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="notes">

</section>

<!-- /.notes -->

<!-- C API usage examples. -->

<section class="examples">

### Examples

```c
#include "stdlib/stats/base/dists/wald/mean.h"
#include <stdlib.h>
#include <stdio.h>

static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}

int main( void ) {
double lambda;
double mu;
double y;
int i;

for ( i = 0; i < 10; i++ ) {
mu = random_uniform( 0.1, 5.0 );
lambda = random_uniform( 0.1, 20.0 );
y = stdlib_base_dists_wald_mean( mu, lambda );
printf( "µ: %.4f, λ: %.4f, Mean(X;µ,λ): %.4f\n", mu, lambda, y );
}
}
```

</section>

<!-- /.examples -->

</section>

<!-- /.c -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[wald-distribution]: https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

[mean]: https://en.wikipedia.org/wiki/Mean

</section>

<!-- /.links -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var EPS = require( '@stdlib/constants/float64/eps' );
var pkg = require( './../package.json' ).name;
var mean = require( './../lib' );


// MAIN //

bench( pkg, function benchmark( b ) {
var lambda;
var mu;
var y;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
mu = ( randu()*100.0 ) + EPS;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's update the benchmark files to use the random array functions like in the example code to move the random number generation out of the benchmarking loop.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Consult other stats packages for how this should look these days.

lambda = ( randu()*20.0 ) + EPS;
y = mean( mu, lambda );
if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2026 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var resolve = require( 'path' ).resolve;
var bench = require( '@stdlib/bench' );
var Float64Array = require( '@stdlib/array/float64' );
var uniform = require( '@stdlib/random/base/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var tryRequire = require( '@stdlib/utils/try-require' );
var format = require( '@stdlib/string/format' );
var EPS = require( '@stdlib/constants/float64/eps' );
var pkg = require( './../package.json' ).name;


// VARIABLES //

var mean = tryRequire( resolve( __dirname, './../lib/native.js' ) );
var opts = {
'skip': ( mean instanceof Error )
};


// MAIN //

bench( format( '%s::native', pkg ), opts, function benchmark( b ) {
var lambda;
var len;
var mu;
var y;
var i;

len = 100;
mu = new Float64Array( len );
lambda = new Float64Array( len );
for ( i = 0; i < len; i++ ) {
mu[ i ] = uniform( EPS, 100.0 );
lambda[ i ] = uniform( EPS, 20.0 );
}
b.tic();
for ( i = 0; i < b.iterations; i++ ) {
y = mean( mu[ i % len ], lambda[ i % len ] );
if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( y ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});
Loading