-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputerVision.js
117 lines (107 loc) · 3.85 KB
/
computerVision.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
const cv = require('opencv4nodejs');
const jimp = require('jimp');
const ImgDownload = require('image-downloader');
const fs = require('fs');
const classifiers = {
FACE: "face",
EYE: "eye",
BODY: "body",
SMILE:"smile"
}
async function faceReplace(path){ // pretty much exactly zachs code except for like one tiny change
const faces = detect(path, classifiers.FACE);
let img = await jimp.read(path);
if(faces.length > 0){
for(let i = 0; i < faces.length; i++){
let face = faces[i];
const length = fs.readdirSync('./images').length;
let file_id = Math.round(Math.random() * (length -1));
let image_filename = 'images/face' + file_id + '.png';
console.log(image_filename);
const insertedImage = await jimp.read(image_filename);
img = img.composite(insertedImage.resize(face.width,face.height),face.x, face.y);
}
}
else{
const length = fs.readdirSync('./images').length;
let file_id = Math.round(Math.random() * (length -1));
let image_filename = 'images/face' + file_id + '.png';
console.log(image_filename);
const insertedImage = await jimp.read(image_filename);
img = img.composite(insertedImage.resize(Math.round(img.bitmap.width / 2), Math.round(img.bitmap.height / 2)), Math.round(img.bitmap.width / 4), Math.round(img.bitmap.height / 4));
}
img.write(path);
return 0;
}
async function downloadImage(url, path){
const options = {
url: url,
dest: path
}
filename = '';
try{
filename = (await ImgDownload.image(options)).filename;
console.log('Saved to', filename) // Saved to /path/to/dest/photo.jpg
return filename;
}
catch(e){
console.error(e);
return 1;
}
}
function detect(path, classifier){
switch(classifier){
case classifiers.FACE:
classifier = new cv.CascadeClassifier(cv.HAAR_FRONTALFACE_DEFAULT);
break;
case classifiers.EYE:
classifier = new cv.CascadeClassifier(cv.HAAR_EYE);
break;
case classifiers.BODY:
classifier = new cv.CascadeClassifier(cv.HAAR_FULLBODY);
break;
case classifiers.SMILE:
classifier = new cv.CascadeClassifier(cv.HAAR_SMILE);
console.log('smile selected');
break;
default:
classifier = new cv.CascadeClassifier(cv.HAAR_FRONTALFACE_DEFAULT);
console.log('face selected');
break;
}
const mat = cv.imread(path);
const matGray = mat.bgrToGray();
return (classifier.detectMultiScale(matGray)).objects;
}
function drawDick(mat, point,size){
const ballSize = size * 0.2;
const center = point;
let leftBall = new cv.Point(center.x - ballSize, center.y + size * 0.3);
let rightBall = new cv.Point(center.x + ballSize, center.y + size * 0.3);
let shaftPos = new cv.Point(center.x,center.y - size * 0.1);
mat.drawCircle(leftBall, ballSize, new cv.Vec(0, 255, 0), 5);
mat.drawCircle(rightBall, ballSize, new cv.Vec(0, 255, 0), 5);
let shaft = new cv.RotatedRect(shaftPos,new cv.Size(ballSize,size * 0.9), 0);
mat.drawEllipse(shaft, new cv.Vec(0, 255, 0), 5);
return mat
}
function dickhead(path){
let points = detect(path, classifiers.FACE);
const mat = cv.imread(path);
if(points == 0){
drawDick(mat, new cv.Point(mat.cols/2.0,mat.rows/2.0), mat.rows);
}
else{
for(let i = 0; i < points.length; i++){
drawDick(mat, new cv.Point(points[i].x + points[i].width/2.0,points[i].y + points[i].height/2.0), points[i].height);
}
}
cv.imwrite(path,mat);
}
module.exports = {
downloadImage:downloadImage,
dickhead: dickhead,
faceReplace:faceReplace,
detect:detect,
classifiers:classifiers
}