Upload documents and ask AI questions about them with source citations.
graph TB
User[π€ User] --> WebUI[π React Frontend]
WebUI --> API[π FastAPI Backend]
API --> Processor[π Document Processor]
API --> QueryEngine[π Query Engine]
Processor --> Embeddings[π§ OpenAI Embeddings]
Embeddings --> VectorDB[(ποΈ Qdrant Vector DB)]
QueryEngine --> VectorDB
QueryEngine --> LLM[π€ GPT-4]
API --> PostgreSQL[(πΎ PostgreSQL)]
API --> Redis[(β‘ Redis Cache)]
# Clone and setup
git clone <repository-url>
cd ai-rag-python
cp .env.example .env
# Edit .env with your OpenAI API key
# Start services
docker-compose up -d
# Access
# Frontend: http://localhost:3000
# API Docs: http://localhost:8000/docsBackend:
cd backend && pip install -r requirements.txt
uvicorn app.main:app --reloadFrontend:
cd frontend && npm install
npm start- Multi-format document support (PDF, text)
- AI-powered Q&A with citations
- Semantic search via vector embeddings
- React frontend + FastAPI backend
- Production Docker deployment