Skip to content

My implementation of Decision Tree ID3 algorithm for all categorical attributes.

Notifications You must be signed in to change notification settings

tiepvupsu/DecisionTreeID3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DecisionTreeID3

Implement ID3 algorithm for data with all categorical attributes by using panda and numpy (sklearn DecisionTreeClassifier doesn't support categorical attributes).

Stopping criteria

  • max_depth: the max depth of the tree.
  • min_samples_split: the minimum number of samples in a split to be considered.
  • min_gain: minimum gain for splitting.

simple test on weather.csv

id outlook temperature humidity wind play
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rainy mild high weak yes
5 rainy cool normal weak yes
6 rainy cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes
10 rainy mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rainy mild high strong no
python id3.py

Result should be:

['no', 'no', 'yes', 'yes', 'yes', 'no', 'yes', 'no', 'yes', 'yes', 'yes', 'yes', 'yes', 'no']

It means 100% accuracy on training set.

Pruning might be added later.

About

My implementation of Decision Tree ID3 algorithm for all categorical attributes.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages