Skip to content

tlab-wide/Co3SOP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Co3SOP: A Synthetic Benchmark for Collaborative 3D Semantic Occupancy Prediction in V2X Autonomous Driving

News

  • [2025/06/20] The preprint version is available on arXiv
  • [2025/03/10] The annotations for 3D semantic occupancy prediction are uploaded here.

Table of Contents

Introduction

3D semantic occupancy prediction is an emerging perception paradigm in autonomous driving, providing a voxel-level representation of both geometric details and semantic categories. However, the perception capability of a single vehicle is inherently constrained by occlusion, restricted sensor range, and narrow viewpoints. To address these limitations, collaborative perception enables the exchange of complementary information, thereby enhancing the completeness and accuracy. In the absence of a dedicated dataset for collaborative 3D semantic occupancy prediction, we augment an existing collaborative perception dataset by replaying it in CARLA with a high-resolution semantic voxel sensor to provide dense and comprehensive occupancy annotations. In addition, we establish benchmarks with varying prediction ranges designed to systematically assess the impact of spatial extent on collaborative prediction. We further develop a baseline model that performs inter-agent feature fusion via spatial alignment and attention aggregation. Experimental results demonstrate that our baseline model consistently outperforms single-agent models, with increasing gains observed as the prediction range expands.

Annotation Pipeline

Overview

Baseline Model

Overview

Getting Start

Dataset Preparation

Installation

Baseline Training and Evaluation

Customized Annotation Collection (Optional)

Benchmark Result

1. Benchmark Result for Range [25.6, 25.6, 4.8]m

Methodology Modality mIoU Empty Buildings Fences Other Pedestrians Poles Roadlines Roads Sidewalks Vegetation Vehicles Walls Trafficsigns Sky Ground Bridge Railtrack Guardrail Trafficlight Static Dynamic Water Terrain Unlabeled
SSCNet Lidar 13.21 93.01 1.84 0.16 0.00 0.00 3.60 0.00 0.23 19.22 41.43 71.73 0.26 0.00 0.00 37.73 0.00 0.00 8.22 0.25 3.68 0.07 0.00 26.41 9.26
LMSCNet Lidar 24.92 96.90 8.67 22.27 0.00 0.00 29.57 2.57 86.70 42.24 43.77 85.35 9.97 18.19 0.00 62.68 0.00 0.00 12.02 0.00 18.39 1.57 0.00 36.11 21.16
OccFormer Camera 29.48 97.03 11.63 14.17 0.00 0.00 19.67 39.64 87.40 45.32 42.78 75.7 13.41 9.73 0.00 67.08 0.00 0.00 35.53 5.43 16.14 1.82 0.00 86.95 38.01
SurroundOcc Camera 28.71 97.33 10.63 11.06 0.00 0.00 17.22 26.78 86.87 46.61 44.92 75.95 12.37 17.27 0.00 53.80 0.00 0.00 48.49 2.11 12.86 2.89 0.00 76.58 45.44
Co3SOP-Ego Camera 29.36 97.30 9.96 12.56 0.01 0.00 18.73 36.19 88.53 44.69 45.51 77.53 11.13 11.10 0.00 55.08 0.00 0.00 48.61 1.50 14.61 4.03 0.00 82.49 45.26
Co3SOP-Base Camera 30.04 97.41 10.05 12.37 0.00 0.00 20.02 38.43 89.24 46.12 46.36 80.55 12.11 11.16 0.00 55.84 0.00 0.00 53.23 1.27 14.71 3.68 0.00 82.93 45.53

2. Benchmark Result for Range [51.2, 51.2, 4.8]m

Methodology Modality mIoU Empty Buildings Fences Other Pedestrians Poles Roadlines Roads Sidewalks Vegetation Vehicles Walls Trafficsigns Sky Ground Bridge Railtrack Guardrail Trafficlight Static Dynamic Water Terrain Unlabeled
SSCNet Lidar 9.58 91.18 0.17 1.48 0.00 0.00 0.14 0.16 25.88 9.57 30.89 48.09 0.49 0.00 0.00 0.08 0.03 0.00 12.72 0.00 0.94 3.09 0.00 2.74 2.31
LMSCNet Lidar 20.35 95.79 3.09 18.01 0.00 0.00 24.95 0.57 75.84 48.66 34.90 75.63 10.39 0.02 0.00 31.81 0.00 0.00 6.07 0.00 4.37 0.04 0.00 36.93 21.47
OccFormer Camera 25.41 95.04 11.93 12.57 0.35 0.00 12.62 22.10 75.30 51.41 39.77 51.26 15.53 7.68 0.00 57.79 2.95 0.00 41.41 3.75 11.61 7.10 0.00 53.91 35.83
SurroundOcc Camera 25.76 95.33 7.57 11.60 1.77 0.00 13.51 22.13 79.53 45.23 35.60 52.34 12.92 11.72 0.00 52.90 2.32 0.00 42.17 2.03 10.08 6.46 0.00 75.08 37.88
Co3SOP-Ego Camera 25.85 95.21 7.52 13.18 1.36 0.00 10.91 24.78 78.95 43.38 35.72 54.02 13.13 10.35 0.00 54.45 2.17 0.00 38.22 3.25 11.70 8.45 0.00 75.21 38.53
Co3SOP-Base Camera 27.50 95.30 8.19 13.70 0.52 0.00 16.16 29.12 82.35 42.92 36.30 66.48 13.99 9.16 0.00 51.96 2.26 0.00 48.54 3.30 12.09 7.84 0.00 80.75 37.18

3. Benchmark Result for Range [76.8, 76.8, 4.8]m

Methodology Modality mIoU Empty Buildings Fences Other Pedestrians Poles Roadlines Roads Sidewalks Vegetation Vehicles Walls Trafficsigns Sky Ground Bridge Railtrack Guardrail Trafficlight Static Dynamic Water Terrain Unlabeled
SSCNet Lidar 10.04 87.33 0.19 0.41 16.18 0.00 0.00 0.00 0.14 20.28 22.91 39.35 0.18 0.00 0.00 22.18 0.07 0.00 10.21 0.00 3.40 0.62 0.00 17.01 0.53
LMSCNet Lidar 17.62 93.70 1.79 9.26 0.00 0.00 17.92 0.00 67.99 53.27 23.91 62.94 10.08 0.04 0.00 20.59 0.00 0.00 3.37 0.00 2.82 0.00 0.00 33.43 21.72
OccFormer Camera 24.12 92.67 13.43 11.04 2.74 0.00 10.17 15.53 73.69 59.51 35.30 33.35 11.55 2.49 0.00 64.75 5.45 0.00 36.90 0.11 13.44 9.11 0.00 53.05 34.63
SurroundOcc Camera 24.68 93.61 6.91 8.84 12.50 0.00 4.78 14.09 74.87 55.30 29.08 29.20 10.03 6.23 0.00 64.77 3.74 0.00 39.65 1.10 10.22 8.33 0.00 75.08 44.03
Co3SOP-Ego Camera 24.81 93.46 7.32 9.88 12.04 0.00 4.29 14.55 75.54 53.53 31.18 34.32 10.54 7.41 0.00 62.58 4.02 0.00 40.02 2.18 11.18 8.80 0.00 71.54 41.13
Co3SOP-Base Camera 27.00 93.78 9.15 11.38 6.83 0.00 7.12 16.08 80.28 55.47 34.26 50.98 12.70 10.02 0.00 68.88 4.39 0.00 44.89 2.42 13.16 9.48 0.00 74.43 42.44

Citation

If you find our work useful for your research, please consider citing the paper:

@article{wu2025synthetic,
  title={A Synthetic Benchmark for Collaborative 3D Semantic Occupancy Prediction in V2X Autonomous Driving},
  author={Wu, Hanlin and Lin, Pengfei and Javanmardi, Ehsan and Bao, Naren and Qian, Bo and Si, Hao and Tsukada, Manabu},
  journal={arXiv preprint arXiv:2506.17004},
  year={2025}
}

Acknowledgements

Many thanks to these excellent projects:

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published