Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merge Tolk update to testnet #1500

Merged
merged 7 commits into from
Jan 27, 2025
Merged

Merge Tolk update to testnet #1500

merged 7 commits into from
Jan 27, 2025

Conversation

EmelyanenkoK
Copy link
Member

No description provided.

EmelyanenkoK and others added 7 commits December 11, 2024 14:43
This is a huge refactoring focusing on untangling compiler internals
(previously forked from FunC).
The goal is to convert AST directly to Op (a kind of IR representation),
doing all code analysis at AST level.

Noteable changes:
- AST-based semantic kernel includes: registering global symbols,
  scope handling and resolving local/global identifiers,
  lvalue/rvalue calc and check, implicit return detection,
  mutability analysis, pure/impure validity checks,
  simple constant folding
- values of `const` variables are calculated NOT based on CodeBlob,
  but via a newly-introduced AST-based constant evaluator
- AST vertices are now inherited from expression/statement/other;
  expression vertices have common properties (TypeExpr, lvalue/rvalue)
- symbol table is rewritten completely, SymDef/SymVal no longer exist,
  lexer now doesn't need to register identifiers
- AST vertices have references to symbols, filled at different
  stages of pipeline
- the remaining "FunC legacy part" is almost unchanged besides Expr
  which was fully dropped; AST is converted to Ops (IR) directly
FunC's (and Tolk's before this PR) type system is based on Hindley-Milner.
This is a common approach for functional languages, where
types are inferred from usage through unification.
As a result, type declarations are not necessary:
() f(a,b) { return a+b; } // a and b now int, since `+` (int, int)

While this approach works for now, problems arise with the introduction
of new types like bool, where `!x` must handle both int and bool.
It will also become incompatible with int32 and other strict integers.
This will clash with structure methods, struggle with proper generics,
and become entirely impractical for union types.

This PR completely rewrites the type system targeting the future.
1) type of any expression is inferred and never changed
2) this is available because dependent expressions already inferred
3) forall completely removed, generic functions introduced
   (they work like template functions actually, instantiated while inferring)
4) instantiation `<...>` syntax, example: `t.tupleAt<int>(0)`
5) `as` keyword, for example `t.tupleAt(0) as int`
6) methods binding is done along with type inferring, not before
   ("before", as worked previously, was always a wrong approach)
Comparison operators `== / >= /...` return `bool`.
Logical operators `&& ||` return bool.
Constants `true` and `false` have the `bool` type.
Lots of stdlib functions return `bool`, not `int`.

Operator `!x` supports both `int` and `bool`.
Condition of `if` accepts both `int` and `bool`.
Arithmetic operators are restricted to integers.
Logical `&&` and `||` accept both `bool` and `int`.

No arithmetic operations with bools allowed (only bitwise and logical).
Totally, v0.7 will include:
- AST-level semantic kernel, transform AST to Ops directly
- fully rewritten type system, drop Hindley-Milner
- `bool` type support
Tolk v0.7: overhaul compiler internals and the type system; `bool` type
* add create-tolk-release.yml

* adjust create-tolk-release for old workflows

* use custom tag

* use old names

* use old names
@EmelyanenkoK EmelyanenkoK merged commit 818a254 into testnet Jan 27, 2025
13 of 14 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants