Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: move grounding zone fits to separate module #39

Merged
merged 8 commits into from
May 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions DAC/interp_DAC_ICESat_GLA12.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@
UPDATE HISTORY:
Updated 05/2024: use wrapper to importlib for optional dependencies
fix memory allocation for output 40HZ data
use ellipsoid transformation function from pyTMD
Updated 04/2024: use timescale for temporal operations
Updated 08/2023: create s3 filesystem when using s3 urls as input
Updated 12/2022: single implicit import of grounding zone tools
Expand All @@ -69,13 +70,12 @@

# attempt imports
h5py = gz.utilities.import_dependency('h5py')
is2tk = gz.utilities.import_dependency('icesat2_toolkit')
netCDF4 = gz.utilities.import_dependency('netCDF4')
pyproj = gz.utilities.import_dependency('pyproj')
pyTMD = gz.utilities.import_dependency('pyTMD')
timescale = gz.utilities.import_dependency('timescale')

# PURPOSE: read ICESat ice sheet HDF5 elevation data (GLAH12) from NSIDC
# PURPOSE: read ICESat ice sheet HDF5 elevation data (GLAH12)
# calculate and interpolate the dynamic atmospheric correction
def interp_DAC_ICESat_GLA12(base_dir, INPUT_FILE,
OUTPUT_DIRECTORY=None,
Expand Down Expand Up @@ -164,8 +164,9 @@ def interp_DAC_ICESat_GLA12(base_dir, INPUT_FILE,
topex = pyTMD.datum(ellipsoid='TOPEX', units='MKS')
wgs84 = pyTMD.datum(ellipsoid='WGS84', units='MKS')
# convert from Topex/Poseidon to WGS84 Ellipsoids
lat_40HZ,elev_40HZ = is2tk.spatial.convert_ellipsoid(lat_TPX, elev_TPX,
topex.a_axis, topex.flat, wgs84.a_axis, wgs84.flat, eps=1e-12, itmax=10)
lat_40HZ,elev_40HZ = pyTMD.spatial.convert_ellipsoid(lat_TPX, elev_TPX,
topex.a_axis, topex.flat, wgs84.a_axis, wgs84.flat,
eps=1e-12, itmax=10)

# pyproj transformer for converting from input coordinates (EPSG)
# to model coordinates
Expand Down
2 changes: 1 addition & 1 deletion DAC/interp_IB_response_ICESat2_ATL06.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,7 +210,7 @@ def ncdf_pressure(FILENAMES,VARNAME,TIMENAME,LATNAME,MEAN,OCEAN,AREA):
# return the sea level pressure anomalies and times
return (SLP, TPX, latitude, MJD)

# PURPOSE: read ICESat-2 land ice data (ATL06) from NSIDC
# PURPOSE: read ICESat-2 land ice data (ATL06)
# calculate and interpolate the instantaneous inverse barometer response
def interp_IB_response_ICESat2(base_dir, INPUT_FILE, MODEL,
OUTPUT_DIRECTORY=None,
Expand Down
2 changes: 1 addition & 1 deletion DAC/interp_IB_response_ICESat2_ATL07.py
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,7 @@ def ncdf_pressure(FILENAMES,VARNAME,TIMENAME,LATNAME,MEAN,OCEAN,AREA):
# return the sea level pressure anomalies and times
return (SLP, TPX, latitude, MJD)

# PURPOSE: read ICESat-2 sea ice height (ATL07) from NSIDC
# PURPOSE: read ICESat-2 sea ice height (ATL07)
# calculate and interpolate the instantaneous inverse barometer response
def interp_IB_response_ICESat2(base_dir, INPUT_FILE, MODEL,
OUTPUT_DIRECTORY=None,
Expand Down
2 changes: 1 addition & 1 deletion DAC/interp_IB_response_ICESat2_ATL11.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,7 +222,7 @@ def ncdf_pressure(FILENAMES,VARNAME,TIMENAME,LATNAME,MEAN,OCEAN,INDICES,AREA):
# return the sea level pressure anomalies, latitudes and times
return (SLP, TPX, latitude, MJD)

# PURPOSE: read ICESat-2 annual land ice height data (ATL11) from NSIDC
# PURPOSE: read ICESat-2 annual land ice height data (ATL11)
# calculate and interpolate the instantaneous inverse barometer response
def interp_IB_response_ICESat2(base_dir, INPUT_FILE, MODEL,
OUTPUT_DIRECTORY=None,
Expand Down
9 changes: 5 additions & 4 deletions DAC/interp_IB_response_ICESat_GLA12.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@
UPDATE HISTORY:
Updated 05/2024: use wrapper to importlib for optional dependencies
fix memory allocation for output 40HZ data
use ellipsoid transformation function from pyTMD
Updated 04/2024: use timescale for temporal operations
Updated 08/2023: create s3 filesystem when using s3 urls as input
use time functions from pyTMD.time
Expand Down Expand Up @@ -79,7 +80,6 @@

# attempt imports
h5py = gz.utilities.import_dependency('h5py')
is2tk = gz.utilities.import_dependency('icesat2_toolkit')
netCDF4 = gz.utilities.import_dependency('netCDF4')
pyproj = gz.utilities.import_dependency('pyproj')
pyTMD = gz.utilities.import_dependency('pyTMD')
Expand Down Expand Up @@ -210,7 +210,7 @@ def ncdf_pressure(FILENAMES,VARNAME,TIMENAME,LATNAME,MEAN,OCEAN,AREA):
# return the sea level pressure anomalies and times
return (SLP, TPX, latitude, MJD)

# PURPOSE: read ICESat ice sheet HDF5 elevation data (GLAH12) from NSIDC
# PURPOSE: read ICESat ice sheet HDF5 elevation data (GLAH12)
# calculate and interpolate the instantaneous inverse barometer response
def interp_IB_response_ICESat(base_dir, INPUT_FILE, MODEL,
OUTPUT_DIRECTORY=None,
Expand Down Expand Up @@ -341,8 +341,9 @@ def interp_IB_response_ICESat(base_dir, INPUT_FILE, MODEL,
topex = pyTMD.datum(ellipsoid='TOPEX', units='MKS')
wgs84 = pyTMD.datum(ellipsoid='WGS84', units='MKS')
# convert from Topex/Poseidon to WGS84 Ellipsoids
lat_40HZ,elev_40HZ = is2tk.spatial.convert_ellipsoid(lat_TPX, elev_TPX,
topex.a_axis, topex.flat, wgs84.a_axis, wgs84.flat, eps=1e-12, itmax=10)
lat_40HZ,elev_40HZ = pyTMD.spatial.convert_ellipsoid(lat_TPX, elev_TPX,
topex.a_axis, topex.flat, wgs84.a_axis, wgs84.flat,
eps=1e-12, itmax=10)
# colatitude in radians
theta_40HZ = (90.0 - lat_40HZ)*np.pi/180.0

Expand Down
Loading