Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions graphsage/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ def load_cora():
with open("cora/cora.content") as fp:
for i,line in enumerate(fp):
info = line.strip().split()
feat_data[i,:] = map(float, info[1:-1])
feat_data[i,:] = list(map(float, info[1:-1]))
node_map[info[0]] = i
if not info[-1] in label_map:
label_map[info[-1]] = len(label_map)
Expand Down Expand Up @@ -99,11 +99,11 @@ def run_cora():
optimizer.step()
end_time = time.time()
times.append(end_time-start_time)
print batch, loss.data[0]
print(batch, loss.data.item())

val_output = graphsage.forward(val)
print "Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro")
print "Average batch time:", np.mean(times)
print("Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro"))
print("Average batch time:", np.mean(times))

def load_pubmed():
#hardcoded for simplicity...
Expand Down Expand Up @@ -171,11 +171,11 @@ def run_pubmed():
optimizer.step()
end_time = time.time()
times.append(end_time-start_time)
print batch, loss.data[0]
print(batch, loss.data.item())

val_output = graphsage.forward(val)
print "Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro")
print "Average batch time:", np.mean(times)
print("Validation F1:", f1_score(labels[val], val_output.data.numpy().argmax(axis=1), average="micro"))
print("Average batch time:", np.mean(times))

if __name__ == "__main__":
run_cora()