Skip to content

wilsnat/unccv_course_project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

unccv_course_project

Devansh Desai | Shamika Kulkarni | Shweta Patil | Nate Wilson

Data preprep:

rename_data -> resize_data -> strip_data

Network: nate_regression_redux with data_loader

Appendix:

dataset_full: folder with data

Set01: set of 320 images of 32 colors

exif01: metadata from images of set01, only the exposure time and iso is consistant

lab_colors01: colors for set01 from colorreader, in Lab, the first row is the corresponding number of images per color

Set02: set of 24 images of 12 different colors

exif02: metadata from images of set02, only the exposure time and iso is consistant

lab_colors02: colors for set02 from colorreader, in Lab, the first row is the corresponding number of images per color

project_documents: all the documents from the project

Group10_Final_Project.pdf: final presentation

Vishion Literature Review.pdf: literature review of related research

Vishion Market Research.pdf: exploration of our customer and their market

Vishion Technical Plan.pdf: how we planned this repository

slideshow_images: images from the slideshow

README.md: You're reading it!

classification_data_loader.py: for nates_classification, imports the data a bit differently with 32 classfications instead of color values

color_extraction.py: k means algorithm for extracting dominant color and color name detector

connected_component.py: grab cut mask shape changed

data_loader.py: loads data for nates_regression and nates_regression_redux, imports the data with raw colors

data_visualization.py: creates chart of color classifications (used in presentation)

nates_classification.py: classifcation algorithm

nates_regression.py: simple regression network

nates_regression_redux.py: more complex regression network

rename_data.py: dataset prep (renames files)

resize_data.py: dataset prep (resized image)

shweta_kmeans_color_extractor.py: k means clustering code changes 17 hours ago

simple_color_detector.py: k means algorithm for extracting dominant color and color name detector a day ago

strip_data.py: dataset prep (copies metadata to exif0*)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages