-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
48 lines (43 loc) · 1.75 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from fastapi import FastAPI, UploadFile, File,Response,HTTPException
from fastapi.middleware.cors import CORSMiddleware
import os,uuid,datetime
import numpy as np
from werkzeug.utils import secure_filename
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.preprocessing import image
# print(tf.config.list_physical_devices('GPU'))
classes = ['Abyssinian','Bengal','Birman','Bombay','British_Shorthair','Egyptian_Mau','Maine_Coon','Persian','Ragdoll','Russian_Blue','Siamese','Sphynx']
image_size = 224
model = load_model('./results/model.h5', compile=False)
origins = [
"*"
]
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["POST"],
allow_headers=["*"],
)
@app.post("/v1")
async def process_image(file: UploadFile=None):
dt_now = datetime.datetime.now()
if file is None:
raise HTTPException(status_code=403, detail="Image not Upload.")
filename = uuid.uuid4()
with open(f"./temp/{filename}.png", "wb") as stream_img:
stream_img.write(file.file.read())
img = image.load_img(os.path.join("./temp", f"{filename}.png"), target_size=(image_size,image_size))
img = image.img_to_array(img)
data = np.array([img])
data = data/image_size
#変換したデータをモデルに渡して推論
result = model.predict(data)[0]
predicted = result.argmax()
per = int(result[predicted]*100)
print(f"============\nリクエスト時間:{dt_now}\n判定結果:{classes[predicted]}\n可能性:{per}%\n============")
#使い終わったファイルは消しておく
os.remove(f"./temp/{filename}.png")
probability = "{}".format(per)
return {"result": classes[predicted],"probability":probability}