Skip to content

πŸ”Ž πŸ“ˆ 🐍 πŸ’° Backtest trading strategies in Python.

License

Notifications You must be signed in to change notification settings

zlpatel/backtesting.py

This branch is 12 commits ahead of, 181 commits behind kernc/backtesting.py:master.

Folders and files

NameName
Last commit message
Last commit date
Nov 19, 2020
Jun 22, 2024
Apr 22, 2021
Oct 14, 2020
Jan 7, 2019
Jun 22, 2024
Jan 25, 2021
Dec 24, 2020
Jan 7, 2019
Jan 7, 2019
Feb 10, 2021
Jan 22, 2019
Mar 31, 2021
Nov 24, 2020

Repository files navigation

Backtesting.py

Build Status Code Coverage Backtesting on PyPI PyPI downloads GitHub Sponsors

Backtest trading strategies with Python.

Project website

Documentation

Star the project if you use it.

Installation

$ pip install backtesting

Usage

from backtesting import Backtest, Strategy
from backtesting.lib import crossover

from backtesting.test import SMA, GOOG


class SmaCross(Strategy):
    def init(self):
        price = self.data.Close
        self.ma1 = self.I(SMA, price, 10)
        self.ma2 = self.I(SMA, price, 20)

    def next(self):
        if crossover(self.ma1, self.ma2):
            self.buy()
        elif crossover(self.ma2, self.ma1):
            self.sell()


bt = Backtest(GOOG, SmaCross, commission=.002,
              exclusive_orders=True)
stats = bt.run()
bt.plot()

Results in:

Start                     2004-08-19 00:00:00
End                       2013-03-01 00:00:00
Duration                   3116 days 00:00:00
Exposure Time [%]                       94.27
Equity Final [$]                     68935.12
Equity Peak [$]                      68991.22
Return [%]                             589.35
Buy & Hold Return [%]                  703.46
Return (Ann.) [%]                       25.42
Volatility (Ann.) [%]                   38.43
Sharpe Ratio                             0.66
Sortino Ratio                            1.30
Calmar Ratio                             0.77
Max. Drawdown [%]                      -33.08
Avg. Drawdown [%]                       -5.58
Max. Drawdown Duration      688 days 00:00:00
Avg. Drawdown Duration       41 days 00:00:00
# Trades                                   93
Win Rate [%]                            53.76
Best Trade [%]                          57.12
Worst Trade [%]                        -16.63
Avg. Trade [%]                           1.96
Max. Trade Duration         121 days 00:00:00
Avg. Trade Duration          32 days 00:00:00
Profit Factor                            2.13
Expectancy [%]                           6.91
SQN                                      1.78
_strategy              SmaCross(n1=10, n2=20)
_equity_curve                          Equ...
_trades                       Size  EntryB...
dtype: object

plot of trading simulation

Find more usage examples in the documentation.

Features

  • Simple, well-documented API
  • Blazing fast execution
  • Built-in optimizer
  • Library of composable base strategies and utilities
  • Indicator-library-agnostic
  • Supports any financial instrument with candlestick data
  • Detailed results
  • Interactive visualizations

Alternatives

See alternatives.md for a list of alternative Python backtesting frameworks and related packages.

About

πŸ”Ž πŸ“ˆ 🐍 πŸ’° Backtest trading strategies in Python.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.0%
  • JavaScript 1.0%